Review of triple negative breast cancer and new agents GASCO Review of SABCS 2014 January 10th 2015, Atlanta, GA

EMORY UNIVERSITY

Accelerating Discovery. Accelerating Hope.

Ruth M. O'Regan, MD

Professor and Vice-Chair for Educational Affairs, Department of Hematology and Medical Oncology, Emory University, Chief of Hematology and Medical Oncology, Georgia Cancer Center for Excellence, Grady Memorial Hospital

Topics to be covered

- Triple negative breast cancer
 - Neo-adjuvant: S2-07 (Nab-paclitaxel), S4-04 (carboplatin/bevacizumab)
 - Metastatic: (S3-01)
- New agents:
 - PI3-kinase inhibition: S2-02, S2-03
 - PD-1 anibody S1-09
 - IMMU-132 P5-18-09

A randomized phase III trial comparing nanoparticle-based (nab) paclitaxel with solventbased paclitaxel as part of neoadjuvant chemotherapy for patients with early breast cancer GBG 69 - GeparSepto

Michael Untch, Christian Jackisch, Andreas Schneeweiss, Bettina Conrad, Bahriye Aktas, Carsten Denkert, Holger Eidtmann, Hermann Wiebringhaus, Sherko Kümmel, Jörn Hilfrich, Mathias Warm, Stefan Paepke, Marianne Just, Claus Hanusch, John Hackmann, Jens-Uwe Blohmer, Michael Clemens, Serban Dan Costa, Bernd Gerber, Valentina Nekljudova, Sibylle Loibl, Gunter von Minckwitz

- A joint study of the AGO Breast and the German Breast Group (GBG) -

This presentation is the intellectual property of GBG and AGO-B. Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium, December 9-13, 2014

Final Study Design (after 400 patients recruited)

Main Baseline Characteristics (recruitment period Jul 12 - Jan 14)

	Paclitaxel	Nab-paclitaxel	Overall
	N (%) N=598	N (%) N=606	N (%) N=1204
Age, median (range), yrs	48 (22 - 76)	49 (21 - 75)	49 (21 - 76)
Palpable tumor size, median (range), mm	30 (5 - 150)	30 (4 -150)	30 (4 - 150)
cT3 / 4	86 (16.6)	82 (16.0)	168 (16.3)
cN+	264 (45.1)	275 (46.3)	539 (45.7)
G 3	336 (56.2)	318 (52.5)	654 (54.3)
Breast cancer subtype			
HER 2-	402 (67.2)	407 (67.1)	809 (67.2)
HER 2+	196 (32.7)	199 (32.8)	395 (32.8)
Ki 67 >20%	414 (69.2)	418 (69.0)	832 (69.1)
SPARC +	94 (15.7)	97 (16.0)	191 (15.9)

This presentation is the intellectual property of GBG and AGO-B.

Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

Taxane Discontinuation

Reason for taxane	Paclitaxel N (%)	Nab-paclitaxel N (%)	
discontinuation	N=598	N=606	p-value
Completed	516 (86.3)	479 (79.0)	<.001
AEs	37 (6.2)	103 (17.0)	
Progression	30 (5.0)	10 (1.7)	
Patient's decision	6 (1.0)	7 (1.2)	
Investigators decision	7 (1.2)	6 (1.0)	
Death	1 (0.2)	0 (0.0)	
Unknown/ missing	1 (0.2)	1 (0.2)	

This presentation is the intellectual property of GBG and AGO-B. Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium, December 9-13, 2014

Primary endpoint (pCR: ypT0 ypN0)

RAGO-B

Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

This presentation is the intellectual property of GBG and AGO-B. Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium, December 9-13, 2014

pCR in Stratified Subgroups

Parameter	Subgroup	pCR (%)	p-value
SPARC	SPARC negative	28.8 vs 37.7	.003
	SPARC positive	29.8 vs 48.3	.074
Ki67	Ki67<=20%	19.6 vs 26.1	.137
	Ki67>20%	33.1 vs 44.0	.001
Biological	HER2-, HR+	12.0 vs 16.0	.183
subtype	HER2-, HR-	25.7 vs 48.2	<.001
	HER2+, HR+	50.0 vs 56.4	.275
	HER2+, HR-	66.7 vs 74.6	.371
HER2	HER2-	17.7 vs. 27.0	<.001
	HER2+	54.1 vs 61.8	.120
HR-status	HR-	36.1 vs. 56.1	<.001
	HR+	25.6 vs. 29.9	.169

This presentation is the intellectual property of GBG and AGO-B.

Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

Gepar Selected Hematological Toxicities

		Paclitaxel	Nab-paclitaxel	
AE	Grade	N (%) N=598	N (%) N=606	p-value
Anemia	any	526 (88.3)	560 (92.4)	.019
	3-4	6 (1.0)	15 (2.5)	.076
Neutropenia	any	485 (81.5)	528 (87.3)	.007
	3-4	368 (61.8)	366 (60.5)	.636
Febrile neutropenia		25 (4.2)	28 (4.6)	.779

This presentation is the intellectual property of GBG and AGO-B. Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

Non-hematological Toxicities

		Paclitaxel	Nab-paclitaxel	
AE	Grade	N (%) N=598	N (%) N=606	p-value
Fatigue	any	465 (77.8)	502 (82.8)	.030
	3-4	28 (4.7)	36 (5.9)	.369
Diarrhea	any	264 (44.1)	310 (51.2)	.015
	3-4	17 (2.8)	20 (3.3)	.739
Rash	any	138 (23.1)	201 (33.2)	<.001
	3-4	4 (0.7)	7 (1.2)	.547
Hand-foot syndrome	any	105 (17.6)	168 (27.7)	<.001
	3-4	6 (1.0)	14 (2.3)	.112
Peripheral sensory	any	390 (65.2)	511 (84.3)	<.001
neuropathy	3-4	16 (2.7)	62 (10.2)	<.001
Myalgia	any	145 (24.2)	189 (31.2)	.008
	3-4	0 (0.0)	3 (0.5)	.249

Contact publications@germanbreastgroup.de for permission to reprint and/or distribute.

Conclusion

- > Primary study endpoint was reached: Nab- paclitaxel increased significantly the pCR rate compared to Paclitaxel (OR 1.53; p<0.001)</p>
- > This effect was seen in all subgroups, especially in patients with triple-negative tumors (OR 2.69)
- Nab-paclitaxel was associated with a higher rate of sensory neuropathy than Paclitaxel
- Long term follow-up is needed to validate if the increase in pCR rate translates into a better DFS and OS

Impact of intrinsic subtype by PAM50 and other gene signatures on pathologic complete response rates in triple-negative breast cancer after neoadjuvant chemotherapy +/- carboplatin or bevacizumab: CALGB/Alliance 40603

William M. Sikov, William T. Barry, Katherine A. Hoadley, Brandelyn N. Pitcher, Baljit Singh, Sara M. Tolaney, Charles S. Kuzma, Timothy J. Pluard, George Somlo, Elisa R. Port, Mehra Golshan, Donald A. Berry, Olwen M. Hahn, Lisa A. Carey, Charles M. Perou, Clifford A. Hudis and Eric P. Winer for the CALGB/Alliance

This presentation is the intellectual property of the author/presenter. Contact him at wsikov@wihrl.org for permission to reprint or distribute.

CALGB 40603: Schema – Randomized Phase II

CALGB 40603: pCR Breast/Axilla (ypT0/is N0)

This presentation is the intellectual property of William Sikov, MD. Contact at wsikov@lifespan.org for permission to reprint or distribute.

Intrinsic Subtype of Pre-treatment Samples

 Overall pCR breast rate in subtyped samples did not differ between Basal-like (170/314) (54%) and non-Basal-like (24/46) (52%) cancers

This presentation is the intellectual property of the author/presenter. Contact him at wsikow@wihrl.org for permission to reprint or distribute.

pCR in Basal-like subtype + / - Carboplatin

This presentation is the intellectual property of the author/presenter. Contact him at wsikow@witrl.org for permission to reprint or distribute.

Carboplatin: Association of Subtype and pCR

	n	No Carbo	Carbo
Basal-like	314	73/155 (47%)	97/159 (61%)
Others	46	9/20 (45%)	15/26 (58%)

Carboplatin benefit did not vary by subtype (interaction p=0.93)

pCR Breast:

Patient group	N	OR	p-value
All patients	443	1.76	0.0018
All subtyped	360	1.74	0.009
Basal-like	314	1.76	0.014
Non-Basals	46	1.67	0.55

This presentation is the intellectual property of the author/presenter. Contact him at wsikow@wihrl.org for permission to reprint or distribute.

pCR in Basal-like subtype + / - Bevacizumab

This presentation is the intellectual property of the author/presenter. Contact him at wsikov@wihrl.org for permission to reprint or c

Bevacizumab: Association of Subtype and pCR

Bevacizumab benefit was significantly greater in Basal-like subtype (interaction p=0.024)

pCR Breast:

Patient group	N	OR	p-value
All patients	443	1.58	0.0089
All subtyped	360	1.78	0.0081
Basal-like	314	2.15	0.0009
Non-Basals	46	0.50	0.25

This presentation is the intellectual property of the author/presenter. Contact him at wsikow@wihrl.org for permission to reprint or distribute.

Gene Expression Proliferation and ER Signatures

		All Samples			Basal-like only		
Variable	Overall pCR rate	Carboplatin benefit	Bevacizumab benefit	Overall pCR rate	Carboplatin benefit	Bevacizumab benefit	
High Proliferation ¹	<u>0.0099</u>	0.8068	<u>0.031</u>	<u>0.0041</u>	0.2674	0.8491	
Low Estrogen Signature ²	<u>0.0032</u>	0.8738	0.0002	<u>0.0002</u>	0.9615	<u>0.0216</u>	

¹Parker et al, JCO 2007 (PMID:19204204); ²Oh et al, JCO 2006 (PMID:16505416)

- High proliferation signature was predictive of pCR in all patients and in the Basal-like subset, and was predictive of greater pCR benefit for bevacizumab in all patients
- Low estrogen signature was predictive of pCR and predictive of greater pCR benefit for bevacizumab in all patients and in the Basal-like subset
- Neither of these signatures was predictive of greater pCR benefit for carboplatin

This presentation is the intellectual property of the author/presenter. Contact him at wsikov@wihrl.org for permission to reprint or distribute.

Conclusions: CALGB 40603

- Large percentage of basal-like cancers by intrinsic subtyping (almost 90%)
- No difference in PCR based in basal-like and non basal-like phenotype
- Higher PCR noted for the addition of bevazicumab in basal-like cancers but lower PCR noted with bevacizumab in non basal-like
- High proliferation, low ER signaling associated with higher PCR rate with bevacizimab

Optimal pre-operative therapy for TNBC?

- Addition of carboplatin to paclitaxel increases PCR in TNBC (both basal and non-basal) but increased hematologic toxicity and decreased dose intensity of paclitaxel without growth factors
- No profile identified as yet that predicts which patients need carboplatin
- Is Nab-paclitaxel an alternative to paclitaxel plus carboplatin (certainly less toxic)?

in partnership with

TNT: A randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or *BRCA1/2* breast cancer

Andrew Tutt, Paul Ellis, Lucy Kilburn, Cheryl Gillett, Sarah Pinder, Jacinta Abraham, Sophie Barrett, Peter Barrett-Lee, Stephen Chan, Maggie Cheang, Mitch Dowsett, Lisa Fox, Patrycja Gazinska, Anita Grigoriadis, Alexander Gutin, Catherine Harper-Wynne, Matthew Hatton, Sarah Kernaghan, Jerry Lanchbury, James Morden, Julie Owen, Jyoti Parikh, Peter Parker, Nazneen Rahman, Rebecca Roylance, Adam Shaw, Ian Smith, Rose Thompson, Kirsten Timms, Holly Tovey, Andrew Wardley, Gregory Wilson, Mark Harries, Judith Bliss on behalf of the TNT trial management group and investigators

CRUK/07/012

Making the discoveries that defeat cancer

This presentation is the intellectual property of the author/presenter. Contact them at tnt-icrctsu@icr.ac.uk for permission to reprint and/or distribute

AUC 6 d3w 6 cvcles

00mg/m² g3w, 6 cycles

This presentation is the intellectual property of the author/presenter. Contact them at tnt-icrctsu@icr.ac.uk for permission to reprint and/or distribute

8

Baseline characteristics

376 patients/74 UK centres between 08/08-03/14

			Carboplatin (N=188)		Doc	etaxel
	72				(N=188)	
	Patient status at	TN – no known mutation	166	88.3	171	91.0
	baseline*, n(%)	Known BRCA1/2 mutation	17	9.0	12	6.4
Ś	Stage , n(%)	Locally advanced	15	8.0	20	10.6
on		Metastatic		92.0	168	89.4
g fa	ECOG PS, n(%)	0 or 1	174	92.6	176	93.6
nim		2	14	7.5	12	6.4
Min	Taxane in adjuvan	t setting, n(%)	65	34.6	61	32.5
ã	Liver or parenchy	mal lung metastases, n(%)	98	52.1	100	53.2
	Aga madian (IOP)	5	5	5.7	5	4.9
	Age, median (lock)	ge, median (lock)		6-62.9	47.9	-63.5
	Time to relance m	Time to valence median (IOD)	2	2.1	2	2.1
	rime to relapse, if	ieulan (iur)	1.5	5-3.4	1.3	3-3.5

* 10 pts (5 C, 5 D) subsequently declared ineligible by local centre (but included in ITT analysis)

This presentation is the intellectual property of the author/presenter. Contact them at tnt-icrctsu@icr.ac.uk for permission to reprint and/or distribute

Objective response

14

San Antonio Breast Cancer Symposium, December 9-13, 2014

15

Progression-free survival

16

18

22/44

14/71

Months from randomisation

22/89

Number of events/at risk

C: 0/188

23/165

18/141

San Antonio Breast Cancer Symposium, December 9-13, 2014

17

Objective response – BRCA 1/2 status

San Antonio Breast Cancer Symposium, December 9-13, 2014

22

Objective response – HRD score

Objective response – Basal-like (Prosigna PAM50)²⁴

All patients entered by site as TNBC*

Conclusions: TNT trial

- In the overall population of patients with TNBC carboplatin did not offer an advantage over docetaxel
 - Carboplatin superior to docetaxel in patients with known BRCA germline mutations
 - No difference between agents based on HRD score
 - Superiority of docetaxel over carboplatin in non basal-like TNBC interesting and requires further study

Methods - E1199 - Schema & Patient Population:

Stage IIA-IIIA Breast Cancer

Results – Exploratory Analysis in Triple Negative Disease (N=1025)

FERGI Phase II Study of PI3K Inhibitor Pictilisib (GDC-0941) plus Fulvestrant vs Fulvestrant plus Placebo in Patients with ER+, Aromatase Inhibitor-(AI)-Resistant Advanced or Metastatic Breast Cancer – Part I Results

Ian Krop¹, Stephen Johnston², Ingrid A Mayer³, Maura Dickler⁴, Vinod Ganju⁵, Andres Forero-Torres⁶, Bohuslav Melichar⁷, Serafin Morales⁸, Richard de Boer⁹, Steve Gendreau¹⁰, Mika Derynck¹⁰, Mark Lackner¹⁰, Jill Spoerke¹⁰, Ru-Fang Yeh¹⁰, Gallia Levy¹⁰, Vivian Ng¹⁰, Carol O'Brien¹⁰, Heidi Savage¹⁰, Yuanyuan Xiao¹⁰, Timothy Wilson¹⁰, Soo Chin Lee¹¹, Katarina Petrakova¹², Susanne Vallentin¹³, Denise Yardley¹⁴, Matthew Ellis¹⁵, Martine Piccart¹⁶, Edith A. Perez¹⁷, Eric Winer¹, Peter Schmid¹⁸

 ¹Dana-Farber Cancer Institute, Boston, MA; ²Royal Marsden Hospital, London, UK; ³Vanderbilt-Ingram Cancer Center, Nashville, TN; ⁴Department of Medicine Memorial Sloan Kettering Cancer Center, NY, NY; ⁵Peninsula Oncology Centre, Melbourne, AU; ⁶University of Alabama, Birmingham, AL; ⁷Palacky University Medical School and Teaching Hospital, Olomouc, CZ; ⁸Hospital Arnau de Vilanova, Lleida, ES; ⁹Royal Melbourne Hospital, Parkville, AU; ¹⁰Genentech, South San Francisco, CA; ¹¹National University Hospital, Singapore; ¹²Masaryk Memorial Cancer Institute, Brno, CZ; ¹³Herlev University Hospital, Herlev DK; ¹⁴Sarah Cannon Research Institute, Nashville, TN; ¹⁵Washington University School of Medicine, St. Louis, MO; ¹⁶Institut Jules Bordet, Universite Libre de Bruxelle, Brussels, BE; ¹⁷Mayo Clinic, Jacksonville, FL; ¹⁸Barts Cancer Institute, Queen Mary University London, London, UK

PI3K Pathway Activation in MBC

- 40-45% of ER+ BC tumors harbor a PIK3CA mutation
- PI3K/mTOR signaling has been implicated as a resistance mechanism to anti-estrogen therapies both *in vitro*¹ and in the clinical setting²
- Pictilisib is a orally bioavailable, potent and selective inhibitor of Class I PI3K³
- Oncogenic alterations in PI3K pathway were predictive of sensitivity to pictilisib in vitro and in vivo
- The combination of pictilisib and fulvestrant is synergistic in ER+ BC xenograft models

1. Miller et al. JCO 2010

^{2.} Baselga et al. NEJM 2012; Bachelot et al. JCO 2012

^{3.} Raynaud et al., MCT 2009

FERGI Study Design – Part I

5

¹ Administered on D1 of each 28 day cycle and C1D15; ² Tumor assessments performed every 8 weeks; ³Exons 9 and 20 in the codons encoding amino acids E542, E545, and H1047 were detected by RT-PCR; ⁴ Disease relapse during or within 6 months of completing AI treatment in the adjuvant setting, or disease progression within 6 months of starting AI treatment in the metastatic setting. ⁵ Data presented is with an additional year of follow up per-protocol primary analysis

Median duration of follow up 17.5 months

Baseline Demographics

		Pictilisib (n=89)	Placebo (n=79)
Age	Median (Range)	60.0 (36-90)	63.0 (40-82)
	≥ 65	29 (33%)	29 (37%)
Race	White	78 (88%)	68 (86%)
	Asian	5 (6%)	8 (10%)
ECOG PS	0	61 (69%)	45 (57%)
	1	28 (32%)	33 (43%)
PIK3CA- mutation positive	п	38 (43%)	32 (41%)
Proges-	PR positive (≥10%)	58 (65%)	58 (73%)
receptor ¹	PR negative (<10%)	21 (24%)	14 (18%)
Endocrine resistance (derived) ²	Primary	43 (48%)	41 (52%)
	Secondary	46 (52%)	38 (48%)
A THE REPORT OF THE	and the second se	1	

		(n=89)	(n=79)
Disease	Measurable (derived)	51 (57%)	43 (54%)
(n)	Visceral	51 (57%)	42 (53%)
	Bone-only	19 (21%)	17 (22%)
No. of metastatic	1	31 (35%)	26 (33%)
	2	34 (38%)	22 (28%)
sites	≥3	24 (27%)	31 (39%)
Purpose of most	Adjuvant	24 (27%)	20 (25%)
systemic therapy	Advanced/Metastatic	65 (73%)	59 (75%)
Previous	n	64 (72%)	50 (63%)
chemo-	Neo- or Adjuvant	43 (48%)	35 (44%)
therapy	Metastatic	21 (24%)	15 (19%)
No. of	п	65	59
prior	1	33 (37%)	36 (46%)
theraples	2	23 (26%)	15 (19%)
	23	9 (10%)	8 (10%)

Pictilisih

¹PR status based on central assessment; ²Prin

²Primary and secondary resistance

· Both arms appear to be well balanced

Placebo

Progression-Free Survival in the ITT Population

Progression-Free Survival Based on Tumor PIK3CA Mutation Status

PIK3CA mutation status does not predict benefit of the addition of pictilisib to fulvestrant

10

Objective Response Rate

ORR in the PIK3CA-mutant group treated with pictilisib numerically higher than placebo patients
 Placebo ORR consistent with prior reports (Chia et al., JCO 2008)

Progression-Free Survival in Patients with ER and PR Positive Disease

Progesterone-Receptor Positive Population

Progression-Free Survival in Patients with ER and PR Positive Disease Based on Tumor *PIK3CA* Mutation Status 14

AEs Related to Any Study Drug

	Pictilisib (n=89)		Placebo (n=79)		
Adverse Event ^{1,2}	All Grades	Grade ≥3	All Grades	Grade ≥3	
Diarrhea	56 (63%)	5 (7%)	7 (9%)	4	
Nausea	43 (48%)	3 (3.4%)	15 (19%)	•	
Rash ³	38 (43%)	15 (17%)	5 (6%)	-	
Dysgeusia	31 (35%)	-	-	+	
Fatigue	24 (27%)	5 (6%)	16 (20%)		
Vomiting	18 (20%)	3 (3%)	3 (4%)		
Decreased appetite	17 (19%)	1 (1%)	5 (6%)	+	
Hyperglycemia	15 (17%)	4 (5%)	4 (5%)	+	
Stomatitis	14 (16%)	2 (2%)	2 (2%)	+	
Hot flush	10 (11%)	-	10 (13%)	121	
AST increased	10 (11%)	3 (3%)	7 (8%)	2 (3%)	
Dyspepsia	8 (9%)		2 (3%)	-	
Mucosal inflammation	9 (10%)	-	2 (3%)		
Pneumonitis	7 (8%)	1 (1%)	1 (1%)		
Colitis	4 (5%)	3 (3%)		-	

*Adverse events independent of attribution; based on CTCAE v.3 *Adverse events >10% except pneumonitis and colitis

Includes all rash, generalized, maculo-papular, pruritic, erythematous and papular rash

- There were 28 (31%) SAEs in treatment arm vs 16 (20%) in placebo arm
- Safety is consistent with our single agent phase I experience
- No drug-drug interaction between pictilisib and fulvestrant
- There were no treatment related deaths reported

FERGI Part I Summary

Safety

- The safety profile in FERGI is consistent with Phase I experience
- Toxicity (GI and dermatological) resulted in significant dose modifications and discontinuations of pictilisib

Efficacy

- In the ITT population, the addition of pictilisib to fulvestrant was associated with a non-statistically significant mPFS improvement (5.1m vs 6.6 m, HR 0.74)
- PIK3CA mutation status does not predict benefit of the addition of pictilisib to fulvestrant
- Exploratory subgroup analyses demonstrated potential activity in patients with ER+/PR+ tumors. Further studies warranted to explore this finding.

Preoperative window of opportunity study of the PI3K inhibitor Pictilisib (GDC-0941) plus Anastrozole vs Anastrozole alone in patients with ER+, HER2negative breast cancer (OPPORTUNE study)

<u>P. Schmid</u>, S.E. Pinder, D. Wheatley, C. Zammit, J. Macaskill, J. Hu, R. Price, N Bundred, S. Hadad, A. Shia, S.-J. Sarker, L. Lim, P. Gazinska, N. Woodman, D. Korbie, M. Trau, P. Mainwaring, P. Parker, A. Purushotham, A.M. Thompson

on behalf of the OPPORTUNE study investigators

Barts Cancer Institute, St Bartholomew's Hospital; Queen Mary University of London

San Antonio Breast Cancer Symposium, Dec 9-13, 2014

OPPORTUNE Study Design

- Randomisation (2:1) favouring the combination, stratified by Centre & Grade
- Study dosing once daily for 14 days (+/- 2 days)
 - Anastrozole: 1 mg
 - Pictilisib: initially 340 mg; changed to 260 mg in 08/2012
- Adjuvant therapy as indicated
- 1st analysis of primary endpoint scheduled after 70 evaluable patients;
 2nd analysis after 141 patients focusing on subset analyses and additional biomarkers

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute

Study Population

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium, Dec 9-13, 2014

Individual Change in Ki67

Individual Relative Ki67 Suppression

Individual Patients treated with Anastrozole or Anastrozole + Pictilisib

¹Relative Ki67 Suppression, defined as Ln(Ki67_{Day15}) – Ln(Ki67_{baseline}); ²ΔKi67 Response, defined as ≥50% fall in Ki67 score between Day15 and Baseline

Primary Endpoint Geometric mean Ki67 Suppression

Geometric mean Ki67 Suppression defined as Ln(Ki67_{Day15}) – Ln(Ki67_{baseline})

San Antonio Breast Cancer Symposium, Dec 9-13, 2014

PI3K Pathway Alterations & Response

Geometric mean Ki67 Suppression

¹ Targeted NGS (P1 chip and Ion PI Sequencing 200 v3 Kit) Ampliseq Comprehensive Cancer panel;

² Central IHC analysis, Primary antibody: PTEN (138G6; Cell Signalling #9559)

³ PIK3CA mutation and/or loss of PTEN

This presentation is the intellectual property of Prof. Peter Schmid; contact at p.schmid@qmul.ac.uk for permission to reprint and/or distribute

Geometric mean Ki67 Suppression by Subtype (PAM50)

Ki67 Suppression in Subgroups

Geometric mean Ki67 Suppression

Summary and Conclusions

- Addition of the PI3K inhibitor Pictilisib significantly increased the anti-proliferative response to Anastrozole in ER+ early breast cancer
- Subset analyses suggest increased benefit of Pictilisib for patients with Luminal B or highly-proliferative tumours
- PIK3CA mutations or PTEN status were not predictive of response to Pictilisib
- The addition of Pictilisib to Anastrozole was not associated with an increase in tumour cell apoptosis
- The safety profile of the combination is acceptable and consistent with other trials

A Phase Ib Study of Pembrolizumab (MK-3475) in Patients With Advanced Triple-Negative Breast Cancer

<u>Rita Nanda</u>,¹ Laura Q. Chow,² E. Claire Dees,³ Raanan Berger,⁴ Shilpa Gupta,⁵ Ravit Geva,⁶ Lajos Pusztai,⁷ Marisa Dolled-Filhart,⁸ Kenneth Emancipator,⁸ Edward J. Gonzalez,⁸ Jennifer Pulini,⁸ Kumudu Pathiraja,⁸ Vassiliki Karantza,⁸ Gursel Aktan,⁸ Christine Gause,⁸ Jonathan Cheng,⁸ Laurence Buisseret⁹

¹University of Chicago, Chicago, IL; ²University of Washington, Seattle, WA;
 ³University of North Carolina Lineberger Cancer Center, Chapel Hill, NC;
 ⁴Sheba Medical Center, Tel Hashomer, Israel; ⁵H.Lee Moffitt Cancer Center and Research Institute, Tampa, FL;
 ⁶Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; ⁷Yale University School of Medicine, New Haven, CT;
 ⁸Merck & Co., Inc., Whitehouse Station, NJ; ⁹Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium

This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.

PD-1 Pathway and Immune Surveillance

- PD-1 is expressed primarily on activated T cells¹
- Binding of PD-1 to its ligands PD-L1 and PD-L2 impairs T-cell function¹
- PD-L1 is expressed on tumor cells and macrophages²
- Tumors can co-opt the PD-1 pathway to evade immune surveillance²

Keir ME et al. Annu Rev Immunol. 2008;26:677-704; 2. Pardoll DM. Nat Rev Cancer. 2012;12:252-64.

This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.

Pembrolizumab (MK-3475) Is a Humanized IgG4, High-Affinity, Anti-PD-1 Antibody

- High affinity for the PD-1 receptor (KD ≈ 29 pM)
- Dual ligand blockade of PD-L1 and PD-L2
- No cytotoxic (ADCC/CDC) activity
- PK supports dosing every 2 weeks (Q2W) or every 3 weeks (Q3W)
- Demonstrated clinical activity in multiple tumor types¹⁻⁶
- Recently approved in the United States for the treatment of patients with unresectable or metastatic melanoma and disease progression following ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor

 Ribas A et al. J Clin Oncol. 2014;32(suppl 5):abstr LBA9000; 2. Rizvi N et al. J Clin Oncol. 2014;32(suppl 5): abstr 8007; 3. Garon EB et al. J Clin Oncol. 2014;32(suppl 5): abstr 8020; 4. Seiwert TY et al. J Clin Oncol. 2014;32(suppl 5):abstr 6011. 5. Plimack E et al. Abstr. LBA23. Presented at 2014 ESMO Congress, September 26-30, Madrid, Spain.
 Muro K et al. LBA15. Presented at 2014 ESMO Congress, September 26-30, Madrid, Spain.

This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.

KEYNOTE-012: Triple-Negative Breast Cancer Cohort

- PD-L1 positivity: 58% of all patients screened had PD-L1-positive tumors
- Treatment: 10 mg/kg IV Q2W
- Response assessment: Performed every 8 weeks per RECIST v1.1

*PD-L1 expression was assessed in archival tumor samples using a prototype IHC assay and the 22C3 antibody. Only patients with PD-L1 staining in the stroma or in ≥1% of tumor cells were eligible for enrollment.

^bIf clinically stable, patients are permitted to remain on pembrolizumab until progressive disease is confirmed on a second scan performed ≥4 weeks later. If progressive disease is confirmed, pembrolizumab is discontinued. An exception may be granted for patients with clinical stability or improvement after consultation with the sponsor.

Best Overall Response (RECIST v1.1, Central Review)

	Patients Evaluable for Response ^a n = 27 5 (18.5%)		
Overall response rate			
Best overall response			
Complete response ^b	1 (3.7%)		
Partial response ^b	4 (14.8%)		
Stable disease	7 (25.9%)		
Progressive disease	12 (44.4%)		
No assessment ^c	3 (11.1%)		

Includes patients with measurable disease at baseline who received ≥1 pembrolizumab dose and who had ≥1 post-baseline scan or discontinued therapy before the first scan due to progressive disease or a treatment-related AE. 5 patients were excluded because they did not have any assessments per central review (n = 2) or because they did not have measurable disease per central review at baseline (n = 3).

^bConfirmed responses only.

"No assessment" signifies patients who discontinued therapy before the first post-baseline scan due to progressive disease or a treatment-related AE.

Best Overall Response By Previous Therapy (RECIST v1.1, Central Review)

	Evaluable Patients N = 27ª	CR or PR ^b	SD	PD or No Assessment ^c
Neoadjuvant or adjuvant	24	4 (16.7%)	7 (29.2%)	13 (54.2%)
No. of lines for metastatic	disease			
0	4	0 (0.0%)	1 (25.0%)	3 (75.0%)
1	4	1 (25.0%)	1 (25.0%)	2 (50.0%)
2	6	0 (0.0%)	2 (33.3%)	4 (66.7%)
3	4	1 (25.0%)	1 (25.0%)	2 (50.0%)
4	3	1 (33.3%)	0 (0.0%)	2 (66.7%)
≥5	6	2 (33.3%)	2 (33.3%)	2 (33.3%)

Previous therapy among the 5 patients with CR or PR

- Capecitabine: 5 (100.0%)
- Platinum: 3 (60.0%)
- Taxane: 5 (100.0%)

- Eribulin: 1 (20.0%)
- Anthracycline: 4 (80.0%) .

^aIncludes patients with measurable disease at baseline who received ≥1 pembrolizumab dose and who had ≥1 post-baseline scan or discontinued therapy before the first scan due to progressive disease or a treatment-related AE. 5 patients were excluded because they did not have any assessments per central review (n = 2) or because they did not have measurable disease per central review at baseline (n = 3).

^bConfirmed responses only.

"No assessment" signifies patients who discontinued therapy before the first scan due to progressive disease or a treatment-related AE.

Kaplan-Meier Estimate of PFS (RECIST v1.1, Central Review)

PFS rate at 6 months: 23.3%

Treatment-Related Adverse Events With Incidence ≥5%^a

	N = 32		
	Any Grade	Grade 3-5	
Arthralgia	6 (18.8%)	0 (0.0%)	
Fatigue	6 (18.8%)	0 (0.0%)	
Myalgia	5 (15.6%)	0 (0.0%)	
Nausea	5 (15.6%)	0 (0.0%)	
ALT increased	2 (6.3%)	0 (0.0%)	
AST increased	2 (6.3%)	0 (0.0%)	
Diarrhea	2 (6.3%)	0 (0.0%)	
Erythema	2 (6.3%)	0 (0.0%)	
Headache	2 (6.3%)	1 (3.1%)	

 Adverse events of a potentially immune-mediated nature, regardless of attribution, included pruritus (n = 3; all grade 1-2), hepatitis^b (n = 1; grade 3), and hypothyroidism (n = 1; grade 2)

Summary and Conclusions

- Pembrolizumab showed an acceptable safety and tolerability profile in patients with heavily pretreated, PD-L1-positive, advanced triple-negative breast cancer
- Pembrolizumab was associated with an ORR of 18.5%
- Responses were durable, with the median response duration not reached (range, 15 to 40+ weeks) and 3 of 5 responders on treatment for ≥11 months
- The acceptable safety and tolerability profile and promising antitumor activity support the further development of pembrolizumab in patients with advanced triple-negative breast cancer
- A phase II study of pembrolizumab for patients with advanced triple-negative breast cancer is planned for the first half of 2015

IMMU-132 (sacituzumab govitecan)

- IMMU-132 is a ADC targeting Trop-2, an antigen found in high prevalence in many epithelial cancers, including TNBC, and conjugated to SN-38, a topoisomerase inhibitor and active metabolite of irinotecan,
- Studies in mice bearing human pancreatic tumor xenografts (Capan-1) have shown IMMU-132 remains intact in the serum until internalized within the tumor cell where SN-38 is released resulting in selective cancer cell death.

Goldenberg et al Abstract P5-19-08

IMMU-132: Efficacy in Patients with Heavily Pretreated Metastatic TNBC

Goldenberg et al Abstract P5-19-08

IMMU-132 AEs: Patient with TNBC (N=21 patients)

Criteria: Grade 1-4 Adverse Event for \geq 14% or any Grade 3 or 4 Adverse Event.

Number of patients = 21	Total	Grade 1	Grade 2	Grade 3	Grade 4
Diarrhea	11	7	3	1	0
Neutrophil count decreased	9	0	0	7	2
Nausea	9	7	2	0	0
Fatigue	9	7	2	0	0
Alopecia	6	2	4	NA	NA
Anemia	5	2	2	1	0
Vomiting	4	3	1	0	0
White blood count decreased	3	0	2	1	0
Dysgeusia	3	3	0	0	0
Pruritus	3	3	0	0	0
Skin hyperpigmentation	3	3	0	0	0
Lymphocyte count decreased	2	1	0	1	0
Febrile Neutropenia	1	0	0	0	1
Typhilitis	1	0	0	1	0

NA Not applicable.

Goldenberg et al Abstract P5-19-08

Practice changing?

- Maybe:
 - Substitution of Nab-paclitaxel for paclitaxel in pre-op TNBC is reasonable but no comparison to taxol plus carboplatin (less toxic option)
- Confirmatory:
 - Value of platinums in BRCA-related cancers
- Interesting and worthy of further study:
 - Predictive value of sub-typing of TNBC
 - PD1 inhibition in TNBC
 - IMMU-132 in refractory TBC