Genomics, Genetics and Biomarkers

Mark E. Burkard, MD PhD

Associate Professor
University of Wisconsin Carbone Cancer Center

Financial Disclosure

Disclosure Statement (Faculty)
I, Mark E. Burkard, declare that neither I nor any member of my family has a financial arrangement or affiliation with any corporate organization offering financial support or grant monies for this continuing medical education activity or with any corporate organization that might have an interest in the subject being presented.

1. Genomics—more than just point mutations and small indels
2. More on BRCA1/2 VUS
3. Predicting late recurrence
4. Predicting response and resistance
5. Genomics—more than just point mutations and small indels
6. More on BRCA1/2 VUS
7. Predicting late recurrence
8. Predicting response and resistance

- Tumor evolution
- Druggable targets
- ESR1
- ERBB2
- PIK3CA
- Genetic risk panels
- Myriad and others

Dep, tments -
Your Pickup Location Browsing History ~ Karina's Amazon.com Today's Deals Gitt Cards Registry Sell Help
Health \& ersonal Care Housenold Supplies vitamin \& Diet Supplements Baby \& Child Care Heath Care Sports Nutrition Sexual Welliness Heath \& Welliness Medical Supplies \& Equipment Sales \& Special Offers Subscribe \& Save Pime Pantri
New Year New You
New Year New You
Deals in Health \& Wellness shop now

Color - Hereditary Cancer Test - Genetic Test for Hereditary Cancer Risk, Including Breast, Ovarian, Colon, Prostate, and 4 Other Cancers - Analysis of 30 Genes, Including BRCA1 and BRCA2 color Genomic

All Color tests are physician-ordered. Ether your own doctor or an Independent physician will review your purchase ond determine whether this genetic testing is appropriate. The cost will be refundedit the physicion decides that testing is not appropiate.

About the product
Simple 30 gene test, including BRCA1 and BRCA2, to learn your genetic risk for cancer

- Provide a saliva sample from the convenience of your home

Speak with our board-certified genetic counselors, at no extra cost, to help you understand your results
At this time state regulations don't allow us to ship the Color Test collection kit to NY State addresses through
Purchase and determine whether this genetic testing is appropriat

Price: $\$ 249.00$ \& FREE Shipping Note: Not eligible for Amazon Prime.

In stock. Ships from and sold by Color Genomics.
Get it as soon as Jan. 9 - 12 when you choose Standard Shipping
at checkout.
Ship to: Mark E. Burkard - 53528 ~
Qty: 1 Turn on 1-click ordering

Visit the store for unique and innovative products
amazon EXCLUSIVES LLearn more

Advances in genomics

- Tumor evolution

- Druggable targets
- ESR1
- ERBB2
- PIK3CA
- Genetic risk panels
- Myriad and others

But Read length is only 36-125 base pairs
$=0.0000004 \%$ of genome
nor

Tandem Duplicator Phenotype Edison Liu, Jackson Laboratory

Genome copy number in TNBC Dan Stover, DFCI, now Ohio State

Tandem Duplicator Phenotypes defines 50\% of Triple Negative Breast Cancers

Francesca Menghi, Floris Barthel, Vinod Yadav, Ming Tang, Bo Ji, Gregory Carter, Jos Jonkers, Roeland

Verhaak, and
Edison T. Liu

San Antonio
Breast Cancer Symposium December 5-9, 2017

Tandem Duplicator Phenotype (TDP) score identifies a population of cancers with high numbers of TDs distributed across the genome

Tumor with tandem duplications

Menghi et al. PNAS 2016

San Antonio Breast Cancer Symposium, December 5-9, 2017

Mice with conditional BRCA1/TP53 disruption develop TDP group 1 (10 Kb) mammary cancers

K14cre	K14cre	K14cre	K14cre	WAPcre	WAPcre	
Trp53F/F	Trp53F/F	Trp53F/F	Trp53F/F	Trp53	Trp	Trp53F/F
Brca1F/F	Brca2F/F	Brca1F/F Brca2F/F		Brca1F/F		

NON TDP (no 10Kb TD peak)
TDP group 1
NON TDP (WITH 10Kb TD peak)

Menghi, Liu, Jonkers

Oncogenic consequences of Tandem Duplications in TDP

gene

1) Gene Duplication GENE GAIN

2) Double Gene Transection GENE LOSS

Frequent Somatically Mutated Oncogenes and Tumor Suppressors in TNBC and Ovarian Cancers

Oncogene Duplication: ERBB2 MYC (TNBC only) MALAT1 (TNBC only) MUC1 (OV only) MDM2(OV only)

Tumor Suppressor Disruption: PTEN
RB1
MLL3 (TNBC only) RUNX1 (TNBC only) NF1 (OV only)

Take home

- BRCA1 mutations can produce Tandem Duplications
- Tandem duplications are a mechanism of amplification
- Why doesn't BRCA1 cause HER2-amplified cancer?

Putting the pieces together

Tandem Duplicator Phenotype
Edison Liu, Jackson Laboratory
Genome copy number in TNBC Dan Stover, DFCI, now Ohio State

Circulating tumor DNA
(ctDNA or cfDNA)

ichorCNA

What is ctDNA?

2) Uitra low-pass whole-genome sequencing ($0.1 \times$)

Application to large cohorts
 "

1/"11, "1",
"Man"

Algorithm to see genome structures.

Adalsteinsson et al. (Meyerson) Nature Communications 8: 1324, 2017
um, December 5-9. 2017

Genome-wide copy number analysis of chemotherapy-resistant metastatic triplenegative breast cancer from cell-free DNA

San Antonio Breast Cancer Symposium

Daniel G. Stover, Heather A. Parsons, Gavin Ha, Sam Freeman, William T. Barry, Hao Guo, Atish Choudhury, Gregory Gydush, Sarah Reed, Justin Rhoades, Denisse Rotem, Melissa E. Hughes, Deborah A. Dillon, Ann H. Partridge, Nikhil Wagle, Ian E. Krop, Gad Getz, Matthew Meyerson, Todd Golub, J. Christopher Love, Eric P. Winer, Sara M. Tolaney, Nancy U. Lin, Viktor A. Adalsteinsson

Ultra-Low Pass Whole Genome Sermenring (inli-m/is)

Fresh or frozen plasma (4mL)

- EDTA, Streck, or CellSave tubes
- Sequence at very low coverage (0.1X)
- 1 in 10 bases sequenced
- Cannot resolve mutations/indels

Computational approach: ichorCNA

- Identify somatic copy number alterations
- Calculate 'tumor fraction' (TFx) of cfDNA
- TFx $\geq 10 \%$: High confidence SCNA calls

Benefits

- Does not require prior tumor or germline sequence data
- Optimal for investigation of tumors with extensive SCNAs (e.g. TNBC)
- Cost-effective: Less than \$200 per sample

Patient \& Sample Identification: REMARK

> No Samples with TFx Over 10\% Patient $\mathrm{n}=57$ | Sample $\mathrm{n}=278$

≥ 1 Sample with TFx Over 10\% Patient n=101 | Sample n=200

Tumor fraction is dynamic
 Cycle 1 (Day 0)

Tumor Fraction: 31.5\%

Cycle 1 (Day +6)
Tumor Fraction: 19.3\%

Cycle 2 (Day +20) Tumor Fraction: 4.6\%

Cycle 4 (Day +62)
Tumor Fraction: 3.5\%

Cycle 6 (Day +104) Tumor Fraction: 13.4\%

Primary Objective

To evaluate the association of
 cfDNA 'tumor fraction' and copy number alterations with metastatic survival in TNBC.

Hypotheses

- Specific SCNAs are more frequent in chemoresistant metastatic TNBCs relative to chemotherapy-naïve primary TNBCs.
- Cell-free DNA 'tumor fraction' (TFx) $\geq 10 \%$ is associated with worse overall metastatic survival in TNBC.

Ther

- TFx of first available blood sample per patient
- Stratified by pre-specified TFx threshold
- $\geq 10 \%$ versus $<10 \%$
- Overall metastatic survival:
- Time from first blood sample
- Held up in multivariate analysis

- $2 / 3$ of TNBC have tumor-derived DNA $\geq 10 \%$ at some point
- Tfx $\geq 10 \%$ associates with poor survival
- Tfx follows clinical course ($\mathrm{N}=1$)
- Could be a useful prognostic/predictive biomarker
- How repeatable/valid are the ichorCNA estimates of Tfx?
- Is this better than tumor markers?

1. Genomics—more than just point mutations and small indels
2. More on BRCA1/2 VUS
3. Predicting late recurrence
4. Predicting response and resistance

Variants of Uncertain Significance

Cancer risks and response to targeted therapy associated with BRCA2 variants of uncertain significance

Fergus J. Couch, Ph.D.
Mayo Clinic

San Antonio Breast Cancer Symposium - December 5-9, 2017

BRCA2 protein and Homology Directed Repair Assay

San Antonio Breast Cancer Symposium - December 5-9, 2017
HDR assay sensitivity and specificity

San Antonio Breast Cancer Symposium - December 5-9, 2017

Evaluated 139 BRCA2 DBD missense variants

Tane home

- Robust functional assays can classify gene function
- VUS of BRCA1 and BRCA2 are becoming classified into deleterious versus benign
- Consider re-evaluation of your patients with BRCA2 VUS ClinVar and BRCA exchange
- Some risk of generalizability with single assay
- It will be necessary to re-evaluate on populations

1. Genomics—more than just point mutations and small indels
2. More on BRCA1/2 VUS
3. Predicting late recurrence
4. Predicting response and resistance

Association between Pathological Nodal Status and the Risk Jan 6, 2018 of Distant Recurrence or Death from Breast Cancer during the 20-Year Study Period.

Pan H et al. N Engl J Med 2017;377:1836-1846.

Predicting late recurrence

CTS5 clinical predictor
Ivana Sestak, Queen Mary University London

CTCs in ECOG E5103
Joseph Sparano, Einstein/Montefiore

Integration of clinical variables for the prediction of late distant recurrence in patients with estrogen receptor positive breast cancer treated with 5 years of endocrine therapy

Ivana Sestak ${ }^{1}$
Meredith M. Regan², Andrew Dodson ${ }^{3}$, Giuseppe Viale ${ }^{4}$, Beat Thürlimann5, Marco Colleoni ${ }^{6}$, Jack Cuzick ${ }^{1}$, Mitch Dowsett ${ }^{3}$

1. Centre for Cancer Prevention, Queen Mary University of London, London, United Kingdom
2. Dana Farber Cancer Institute, Boston, United States
3. Ralph Lauren Centre for Breast Cancer Research, Royal Marsden, London, United Kingdom
4. European Institute of Oncology \& University of Milan, Milan, Italy
5. Kantonsspital St. Gallen, St. Gallen, Switzerland
6. European Institute of Oncology, Milan, Italy

Aims

1. To develop a prognostic tool (CTS5) specifically for prediction of late distant recurrence using clinicopathological parameters
2. To compare prognostic performance of CTS5 to published Clinical Treatment Score (CTS0)
\rightarrow CTSO developed in TransATAC ($\mathrm{N}=1125$) in presence of IHC markers and in chemotherapy untreated women (Cuzick et al., 2011, JCO)

Training/validation cohorts

CTS5 score development

- Univariate Cox regression to determine prognostic value of each variable:

Clinical variable	HR (95\% CI)	P -value
Number of positive nodes	1.14 (1.12-1.15)	<0.0001
Tumor size (mm)	1.10 (1.08-1.12)	<0.0001
Grade (1 vs. 2, 1 vs. 3)	$\begin{gathered} 2.26 \text { (1.58-3.22) / } 3.37 \text { (2.33- } \\ 4.86) \end{gathered}$	<0.0001 / <0.0001
Age (years)	1.04 (1.02-1.05)	<0.0001
Endocrine therapy (T vs. A)	0.84 (0.67-1.04)	0.108
Final CTS5 mod		
Node: $0=$ Negative $1=1$ positive $2=2-3$ positive $3=4-9$ positive $4=>9$ positive	Size: Grade: Continuous $0=$ Grade 1 (if >30 then $=30$) $1=$ Grade 2 $2=$ Grade 3	Age: Continuous

DR free (\%) in years 5-10

This presentation is the intellectual property of the author/presenter. Contact i.sestak@qmul.ac.uk for permission to reprint and/or distribute.

Combined dataset: DR free (\%)

Combined dataset: DR free (\%)

This presentation is the intellectual property of the author/presenter. Contact i.sestak@qmul.ac.uk for permission to reprint and/or distribute.

Conclusions

- CTS5 was highly prognostic for prediction of late DR
\rightarrow Large proportion of women (42\%) identified where value of extended endocrine therapy is limited
- CTS5 more accurate for late DR than CTS0 (Cuzick et al., 2011, JCO)
- Strengths:
- Large clinical trial data with long-term follow-up
- Clinicopathological parameters measured in all patients

Conclusions II

- Limitations:
- Only applicable to postmenopausal women
- Both trials before routine HER2 testing and directed therapy

\rightarrow CTS5 simple tool to calculate risk of late distant recurrence

Circulating Tumor Cells

and Late Recurrence of Breast Cancer

Joseph A. Sparano, MD¹, Anne O'Neill, MS², Katherine Alpaugh, PhD³, Antonio C. Wolff, MD4, Donald W. Northfelt, MD ${ }^{5}$, Chau T. Dang, MD ${ }^{6}$, George W. Sledge, MD ${ }^{7}$, Kathy Miller, MD ${ }^{8}$

1. Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY; 2. Dana Farber Cancer Institute, Boston, MA; 3. Fox Chase Cancer Center, Philadelphia, PA; 4. Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; 5. Mayo Clinic, Scottsdale, AZ; 6.Memorial Sloan Kettering Cancer Center, New York, NY;
2. Stanford Cancer Center, Palo Alto, CA; 8. Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN

=EECOG-ACRIN

 cancer research groupReshaping the future of patient care

Methods: Hypothesis \& Study Objectives

Hypothesis:

CTCs are prognostic for late recurrence

Study Objectives:

1. Prevalence of CTCs ~ 5 years after diagnosis
2. Association between CTCs and recurrence

Methods: Study Design

- Population: Stage II-III HER2-negative enrolled in E5103 (NCT00433511)
- Treatment: AC-weekly paclitaxel \pm bevacizumab + endocrine therapy if ER+
- Selection: Recurrence-free 4.5-7.5 years after diagnosis \& informed consent
- CTC Assay: Whole blood (7.5 ml) drawn into fixative-containing tube for CTC identification and enumeration using the CellSearch® system at entry
- Assay results: not reported to clinicians or patients due to uncertainty regarding prognostic information

Results: Patient Characteristics, Recurrences, \& CTC Results
(Enrollment Period: February 2013 - July 2016)

Total	$\begin{gathered} \text { Total } \\ (\mathrm{N}=547) \end{gathered}$	- Median followup - 1.8 years - Range 0-3.9 years - Recurrences - HR-Positive ($\mathrm{N}=14 / 353$): 4.0\% (95\% CI 3.0 to 7.9\%) - HR-Negative ($\mathrm{N}=1 / 193$): $\mathbf{0 . 5} \%$ (95\% CI 0, 2.9\%)
$\begin{aligned} & \text { Age at diagnosis }(n=547) \\ & <50 \text { years } \\ & >=50 \text { years } \end{aligned}$	$\begin{aligned} & 44 \% \\ & 56 \% \end{aligned}$	
$\begin{aligned} & \text { Tumor size }(\mathrm{N}=547) \\ & <2 \mathrm{~cm} \\ & >1=2 \mathrm{~cm} \end{aligned}$ Nodal Status	$\begin{aligned} & 41 \% \\ & 59 \% \end{aligned}$	
Negative Positive	$\begin{aligned} & 27 \% \\ & 73 \% \end{aligned}$	- CTC-Positive (1 cell/7.5 ml blood) - Overall ($\mathrm{N}=\mathbf{2 6}$): $\mathbf{4 . 8 \%}$ 95\% CI 3.1\%-6.9\% - HR-Positive ($\mathrm{N}=18 / 353$): 5.1%
HR Expression ($\mathrm{N}=546$) Negative Positive	$\begin{aligned} & 35 \% \\ & 65 \% \end{aligned}$	
Histologic grade ($\mathrm{N}-534$) Low-intermediate High	$\begin{aligned} & 45 \% \\ & 55 \% \end{aligned}$	$95 \% \mathrm{Cl} 3.0 \%-7.9 \%$ - HR-Negative ($\mathrm{N}=8 / 193$): $\mathbf{4 . 1 \%}$
Endocrine Therapy ($\mathrm{N}=330$)	88\%	5\% Cl 1.8\%-9.0

Results: Time to Recurrence in HR+ Disease ($\mathrm{N}=353$)

Median time to recurrence in CTC+: 1.6 years (range 0.5-2.8 years)

Recurrence rates per person-year

- CTC-Pos: 24.7%
- CTC-Neg: 1.5%

2-Year Recurrence

- Positive Predictive Value $=35 \%$
- Negative Predictive Value $=98 \%$

> Time to Recurrence(Years) from Time of CTC Blood Draw

Number at Risk
CTC negative CTC positive CTC positive 335 18

235 10

Results: CTC Burden \& Recurrence in HR+ Disease ($\mathrm{N}=18$)

(all taking endocrine therapy except 3 patients denoted by symbol $\&$ (a)

Conclusions

- Study objective 1: prevalence of detectable CTCs
- Detectable in 5\% with localized HR+, HER2- breast cancer 5 years or more after diagnosis
- After adjuvant chemotherapy and concurrent endocrine therapy
- Also detected in 4\% of HR-, HER- ("triple-negative") disease
- Study objective 2: CTCs and clinical recurrence
- Prospective study - level 1 evidence supporting clinical validity of a positive CTC assay with clinical recurrence in HR+ breast cancer
- Robust risk stratification (hazard ratio $\sim 20 x \uparrow$)
- High negative predictive value (98\%)
- No association with recurrence in ER- disease, although few events in this population

Discussion: Strengths and Limitations

- Strengths
- Prospective study - REMARK guidelines
- Risk stratification in ER+ disease surpasses other assays by 10 -fold
- High negative predictive value (98%)
- Clinicians blinded to CTC result
- Limitations
- Positive CTC did not trigger imaging studies
- Not designed to determine whether negative CTC assay could spare extended adjuvant endocrine therapy in ER+ disease
- CTC performed only at a single time point - uncertain role of serial negative assays as a negative predictive test
- Median followup of 1.8 years is relatively short for ER+ disease
- CTC not evaluated in the context of other assays
- Excluded HER2-positive disease
- No association with recurrence in ER-negative disease

Take home

Sestak CTS5

- CTS5 is a simple predictor of outcome using clinical information you have
- Not validated on premenopausal women or HER2+
- Is grade sufficiently reliable outside of centralized review?

CTCs

- CTCs by Cellsearch is a validated and simple assay
- High negative predictive value
- Only 5\% of patients have CTCs, far fewer than the number of recurrences
- Only identifies the actively recurring tumors?
- Is this better than radiologic evaluations or tumor markers?
- Serial assessments will degrade NPV

Both

- Are they predictive?

1. Genomics—more than just point mutations and small indels
2. More on BRCA1/2 VUS
3. Predicting late recurrence
4. Predicting response and resistance

Predicting response and resistance

Endopredict and response to neoadjuvant therapy
Peter Dubsky, ABCSG
Resistance to CDK4/6i via FGFR
Luigi Formisano, Vanderbilt

Niscrontin

The Endopredict Score Predicts Residual Cancer Burden to Neoadjuvant Chemotherapy and to Neo-Endocrine Therapy in HR+/HER2- Breast Cancer Patients from ABCSG 34

Dubsky PC, FesI C, Singer CF, Pfeiler G, Kronenwett R, Hubalek M, Bartsch R, Stoeger H, Pichler A, Petru E, BjelicRadisic V, Greil R, Rudas M, Tea M-KM, Wette V, Petzer AL, Sevelda P, Egle D, Fitzal F, Exner R, Jakesz R, Balic M, Tinchon C, Bago-Horvath Z, Lax S, Regitnig P, Gnant M, Filipits M

Background III:

ABCSG 34- Primary Endpoint Residual Cancer Burden

- 400 patient, randomized, phase II, academic trial
- In HER2 negative, early BC receiving either neoadjuvant chemotherapy or neo-endocrine therapy as their standard of care (SoC)
- The trial compared the neoadjuvant addition of Tecemotide (L-BLP25) to the neoadjuvant (SoC) alone:

Neochemotherapy Arm: n=311
ER neg./low, G2-3, Ki-67 $\geq 14 \%$

Neo-Letrozole Arm: n=89
ER high, G1-2, Ki-67<14\% and postmenopausal; «Luminal A»

CNaH Stur ciol

Endopredict:

 Validation in ER+/HER2 neg. and Genes

 Validation in ER+/HER2 neg. and Genes}

Retrospective validation in prospective data sets of ca. 3100 women- all ER+/HER2-

EP score +pT and $\mathrm{pN}=$ EPclin score

Proliferation

ER-signaling and differentiation
= EPscore

Primary Objective

Patients,Samples

- To test for predictive value of EP concerning tumor response

Results - EP risk groups: (Neo-Chemotherapy Group)

- EP threshold: low vs. high risk

ABCSG

Multivariate logistic regression model

exploratory: incorporating Metagenes (Neo Chemotherapy Group)

Results - EP risk groups: (Neo-Endocrine Group)

	RCB 0/I	RCB II/III			
EP low risk	12	32	Pos. Pred. Val. 27.3% $(15.0-42.8)$		
EP high risk	3	36	Neg. Pred. Val. 92.3% $(79.1-98.4)$		
		True Pos. Rate 80.0% $(51.9-95.7)$	True Neg. Rate 52.9% $(40.5-65.2)$		Fisher's Exact
:---:					
test					
$\mathrm{p}=0.024$					

EP threshold: low vs. high risk

Multivariate logistic regression model Neo-Endocrine Treatment Group exploratory: incorporating Metagenes

Summary:

- In women treated with 8 cycles of neoadjuvant EC-T Chemotherapy:
- EP score and EP risk groups are associated with RCB
- Notably EP low risk was highly associated to poor tumor shrinkage (NPV: 100\%)
- Excellent tumor shrinkage was largely driven by covariates including cell proliferation:
- Ki-67 LI (p<0.05); Proliferation Metagene and EP score
- In women treated with 6 months of neoadjuvant Letrozole
- EP score and EP risk groups are associated with RCB
- Notably EP high risk was highly associated with poor tumor shrinkage (NPV: 92\%)
- Tumor size was an independent predictor of RCB
- Covariates including ER signaling/differentiation (ER signaling metagene, HR) did not drive response to Letrozole
- The proliferation metagene but not Ki-67 showed statistically independent association to RCB
- The narrow distribution of Ki-67 in the neo-endocrine cohort may have prevented the factor from influencing the model
- EP score can help predict response to endocrine therapy
- Unclear why EP score and Ki67 don't match
- Ki67 is the best predictor of chemo response

Summary

1. Tandem duplications are generated by BRCA1
2. cfDNA may provide information about genomic structure and recurrence risk
3. BRCA2 VUS have functional annotation
4. Late recurrence can be predicted by clinical parameters (and CTCs)
5. Genomics may predict response/resistance.

Summary

1. Tandem duplications are generated by BRCA1
2. cfDNA may provide information about genomic structure and recurrence risk
3. BRCA2 VUS have functional annotation
4. Late recurrence can be predicted by clinical parameters (and CTCs)
5. Genomics may predict response/resistance.

Summary

BRCA2 VUS have functional annotation
ClinVar, BRCAexchange

Late recurrence can be predicted by clinical parameters

Questions?

The genesis of cancer Ryan Denu

