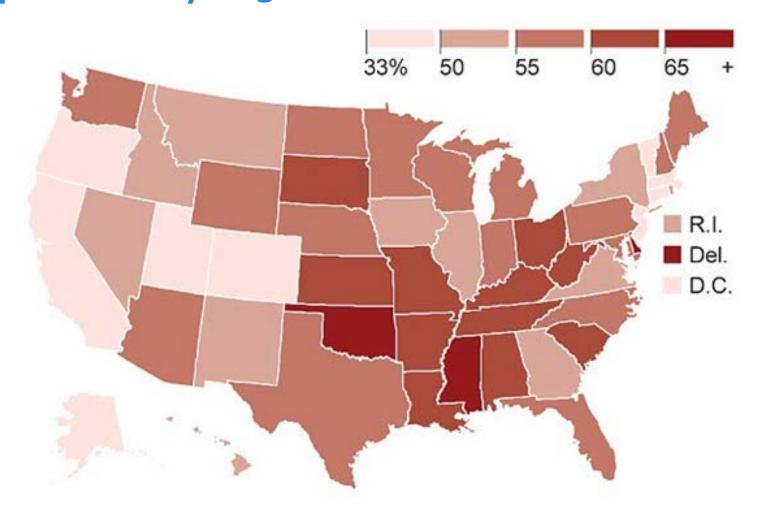


Obesity and Risk of Breast Cancer

Ayca Gucalp, MD
Assistant Attending
Memorial Sloan Kettering Cancer Center
Instructor of Medicine
Weill Cornell Medical College
September 5th, 2014

Case


- 64 year old postmenopausal female
- Diagnosed with stage I ER/PR+, HER2- IDC
- Treated with lumpectomy/SLNBx, RT and an aromatase inhibitor
- At 8-month follow up the patient reports hot flashes, vaginal dryness, and weight gain
- Pre-diagnosis: height 163 cm, weight 80 kg, BMI 30
- Current: height 163 cm, weight 83.9 kg, BMI 32

Obesity* Trends Among US Adults

BMI = [weight in kilograms/(height in meters)²] (*BMI ≥30, or about 30 lbs. overweight for 5'4" person) 1990 2000 2010 25%-29% No Data <10% 10%-14% 15%-19% 20%-24% ≥30%

Projected Obesity As Percentage of State Population by 2030

Increased BMI is Associated with Postmenopausal Breast Cancer

	Experin		Con			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 Overweight							
Barlow 2006	1408	237278	1864	332255	9.3%	1.06 [0.99, 1.13]	-
Kerlikowske 2008	1505	93717	1697	119504	9.3%	1.13 [1.06, 1.21]	-
.ee 2006	542	17154	843	27107	7.0%	1.02 [0.91, 1.13]	+
Sellers 2002	702	12916	567	13205	7.0%	1.27 [1.14, 1.41]	
Setiawan 2009	1053	26172	1488	40272	8.7%	1.09 [1.01, 1.18]	_
Sonnenschein 1999	47	966	55	1955	1.2%	1.73 [1.18, 2.53]	
Suzuki 2006	436	16805	692	29359	6.4%	1.10 [0.98, 1.24]	_
Tehard 2006	244	9039	735	30744	5.3%	1.13 [0.98, 1.30]	
Subtotal (95% CI)		414047		594401	54.2%	1.12 [1.06, 1.18]	◆
otal events	5937		7941				
leterogeneity: Tau ² =	0.00; Chi ²	= 15.98,	df = 7 (P =	= 0.03); I ²	= 56%		
est for overall effect:	Z = 3.94 (P < 0.000	1)				
.2.2 Obese							
Barlow 2006	977	160573	1864	332255	8.8%	1.08 [1.00, 1.17]	-
Cerlikowske 2008	1244	73894	1697	119504	9.0%	1.19 [1.10, 1.27]	-
ee 2006	348	11110	843	27107	6.2%	1.01 [0.89, 1.14]	
Sellers 2002	381	6428	567	13205	6.0%	1.38 [1.22, 1.57]	
Setiawan 2009	729	17983	1488	40272	8.2%	1.10 [1.01, 1.20]	-
Sonnenschein 1999	48	1020	55	1955	1.2%	1.67 [1.14, 2.45]	
uzuki 2006	156	5659	692	29359	4.2%	1.17 [0.99, 1.39]	
ehard 2006	58	2074	735	30744	2.3%	1.17 [0.90, 1.52]	+
Subtotal (95% CI)		278741		594401	45.8%	1.16 [1.08, 1.25]	•
otal events	3941		7941				
leterogeneity: Tau ² =	0.01; Chi ²	= 20.20,	df = 7 (P	= 0.005); F	2 = 65%		
est for overall effect:	Z = 3.92 (P < 0.000	1)				
Total (95% CI)		692788		1188802	100.0%	1.14 [1.09, 1.19]	•
otal events	9878		15882				
leterogeneity: Tau ² =		= 37.70.		= 0.0010); I ² = 60%		
est for overall effect:				0.00			0.5 0.7 1 1.5 2
est for subgroup diffe						Fa	vours experimental Favours control

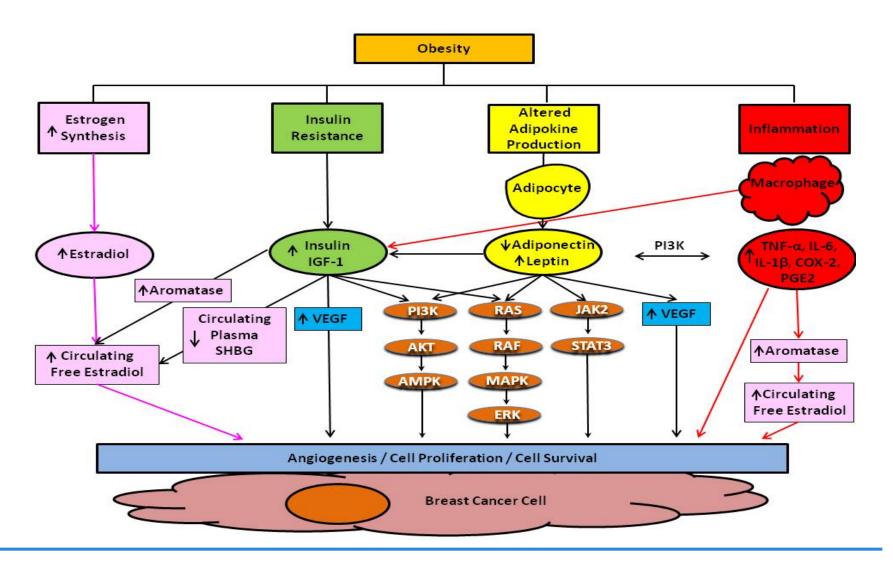
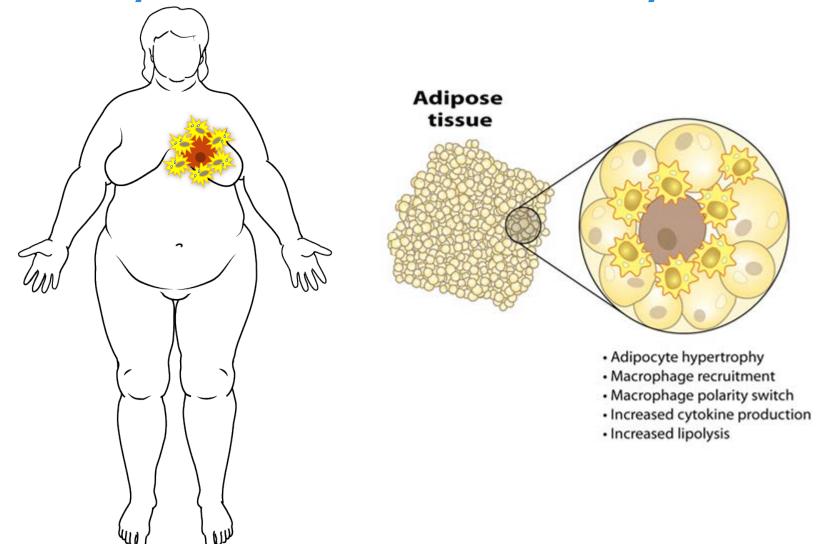
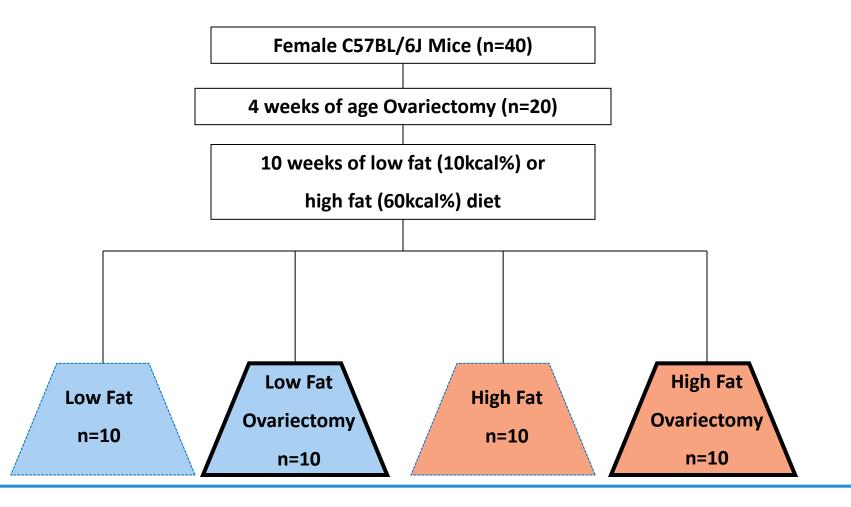

Increased BMI is a Poor Prognostic Factor in Patients with Breast Cancer

Table 1 Sensitivity analyses of pooled hazard ratios of the effect of obesity on survival in breast cancer patients

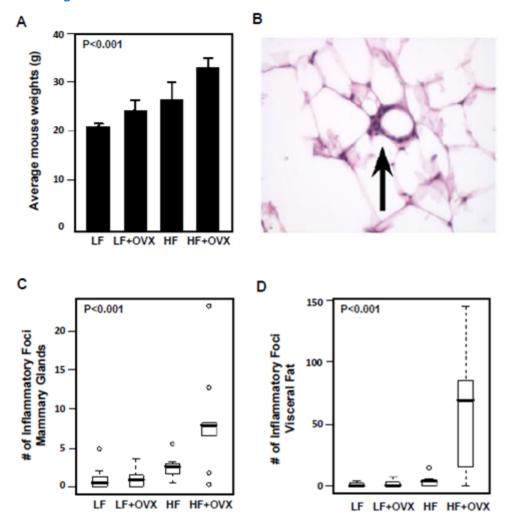
Subgroup	No. of estimates	Pooled HR (95% CI)	Γ ² 96	P-value	
Survival messure	0.84	0.0000000000000000000000000000000000000			
All-cause	36	133 (121-147)	73 (62-80)	0.91	
Breast cancer specific	19	133 (119-150)	58 (30-75)		
Obesity measure					
ВМП	55	133 (123-144)	70 (60-77)	0.95	
WHR.	6	131 (114-1.50)	0 (0-75)		
Study design					
Observational cohort	48	136 (123-1.49)	73 (64-79)	0.53	
Treatment cohort	7	122 (114-131)	0 (0-71)		
Menopausal status					
Pre-menopausal	16	147 (119-183)	68 (46-81)	0.25*	
Post-menopausal	12	122 (0.95-1.57)	70 (47-84)		
Both	36	133 (123-143)	61 (45-73)		
Year of diagnosis					
Pre-1995	30	131 (116-1.46)	76 (66-83)	0.17	
Post-1995	11	1.49 (1.31-1.68)	0 (0-60)		

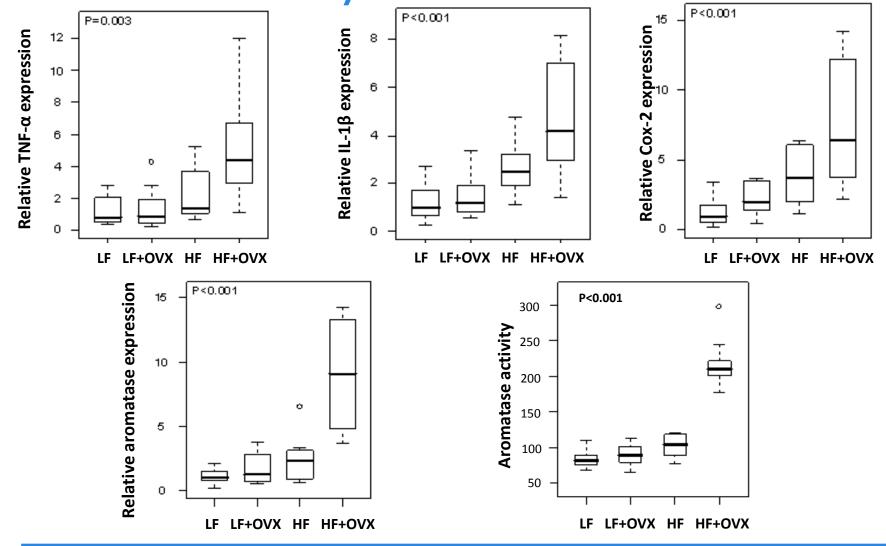
^{*} P-value for pre- versus postmenopausal women (not including studies which did not stratify by monopausal status)

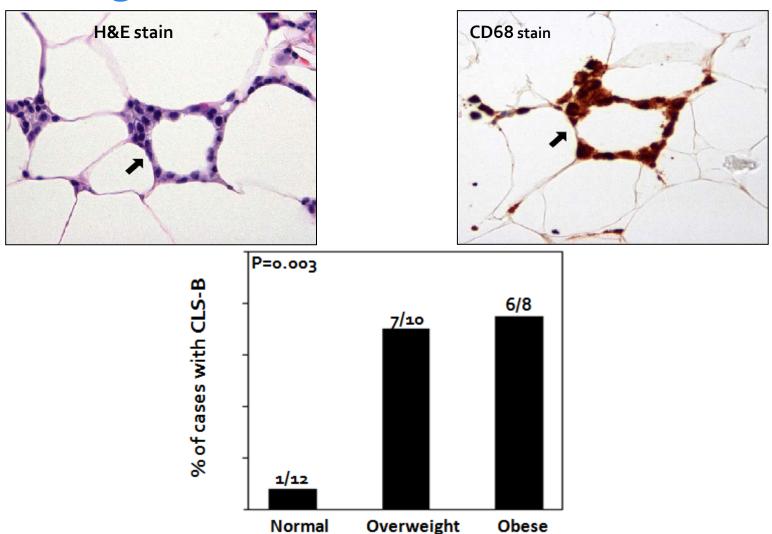

Pathways Linking Obesity with Breast Cancer

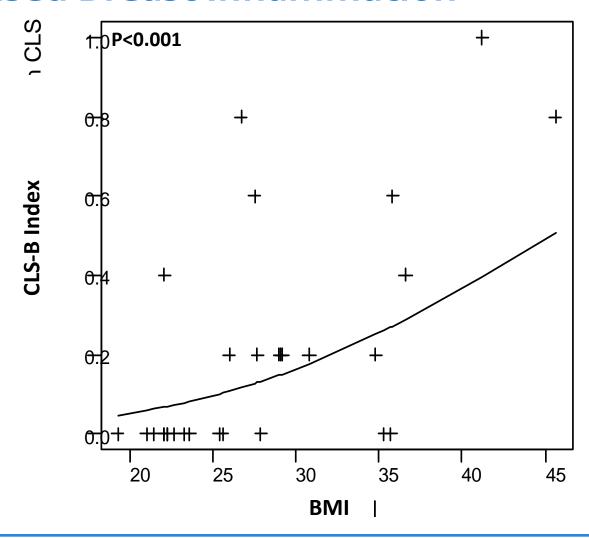

Obesity, Estrogen, and Increased Risk of Postmenopausal Breast Cancer

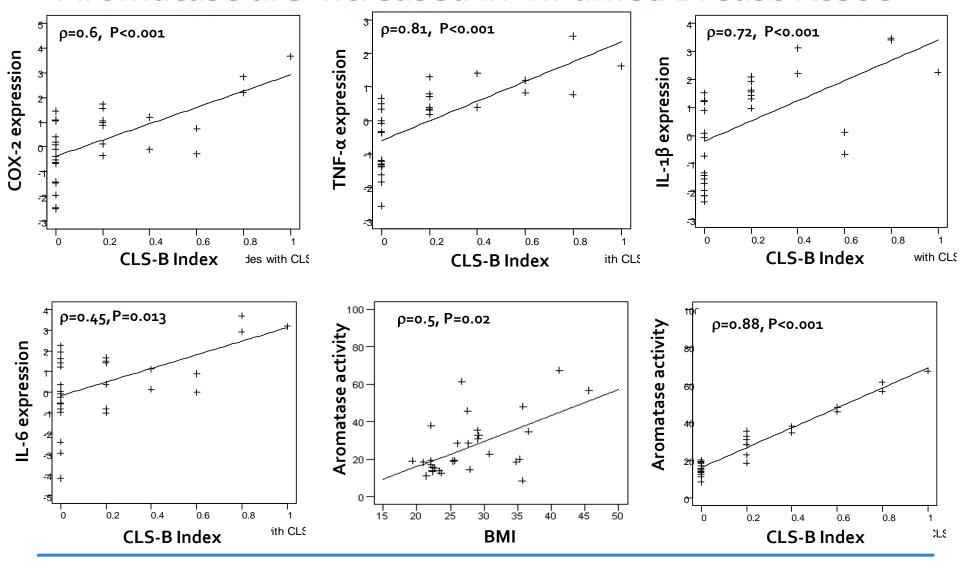
- After menopause, peripheral aromatization of androgen precursors in adipose tissue is largely responsible for estrogen synthesis.
- Obesity causes inflammation in both visceral and subcutaneous fat.
- A number of inflammatory mediators (specifically PGE2, TNFa, IL-1β, and IL-6), are all known to induce aromatase.
- A direct link between obesity, breast white adipose tissue inflammation, and aromatase expression was previously unknown.

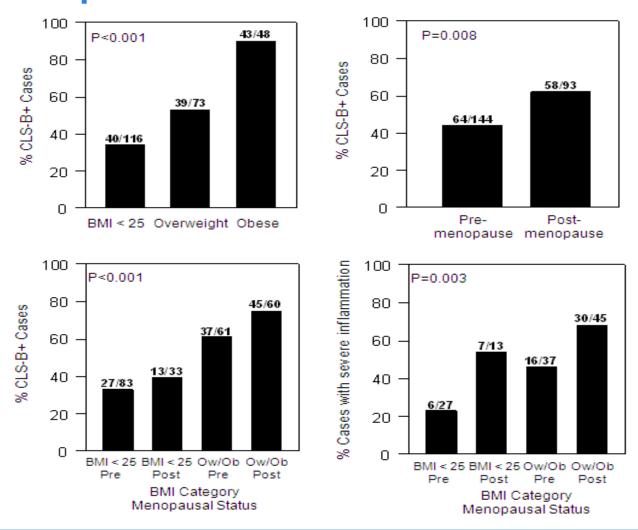

Obesity Causes An Inflammatory State


Preclinical Study To Investigate the Obesity → Inflammation → Aromatase Axis


Diet Induced Obesity Causes Inflammation in the Mammary Gland and Visceral Fat

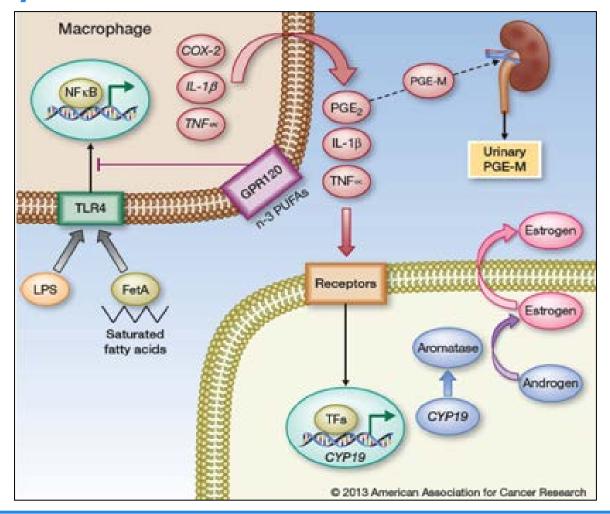

Obesity is Associated with Increased Levels of Pro-inflammatory Mediators and Aromatase

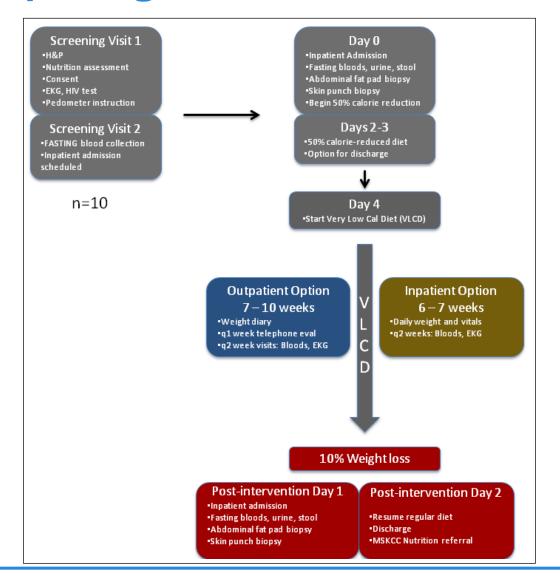

CLS-B are Common in the Breasts of Overweight and Obese Women


Increasing BMI is Associated with Increased Breast Inflammation

Levels of Pro-inflammatory Mediators and Aromatase are Increased in Inflamed Breast Tissue

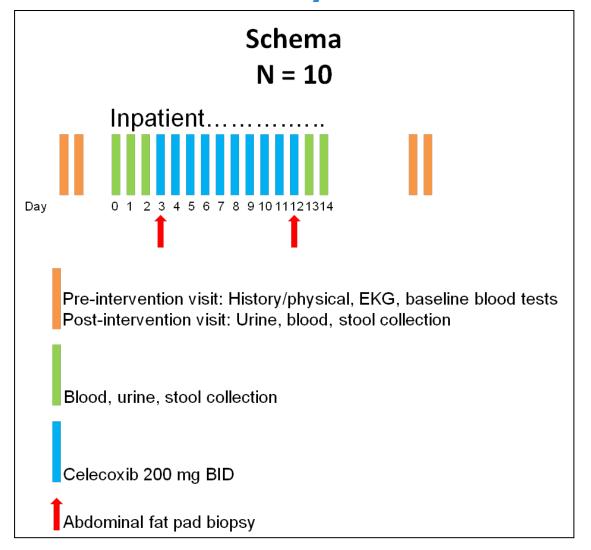
CLS-B are Associated with BMI and Postmenopausal Status


Adipocyte Size Correlates with BMI, Menopausal Status, and CLS-B

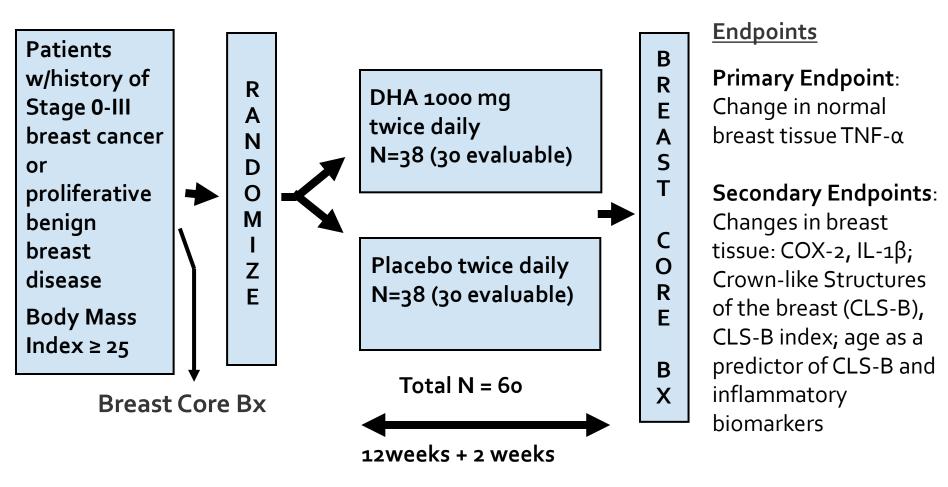

CLS Status is Concordant Between Adipose Depots

Bilateral breast WAT	N (%)		
Concordant	49/63 (78%)		
CLS-B Positive	32/63 (51%)		
CLS-B Negative	17/63 (27%)		
Discordant	14/63 (22%)		
Abdominal and breast WAT			
Concordant	10/13 (77%)		
CLS-B Positive	7/13 (54%)		
CLS-B Negative	3/13 (23%)		
Discordant	3/13 (23%)		

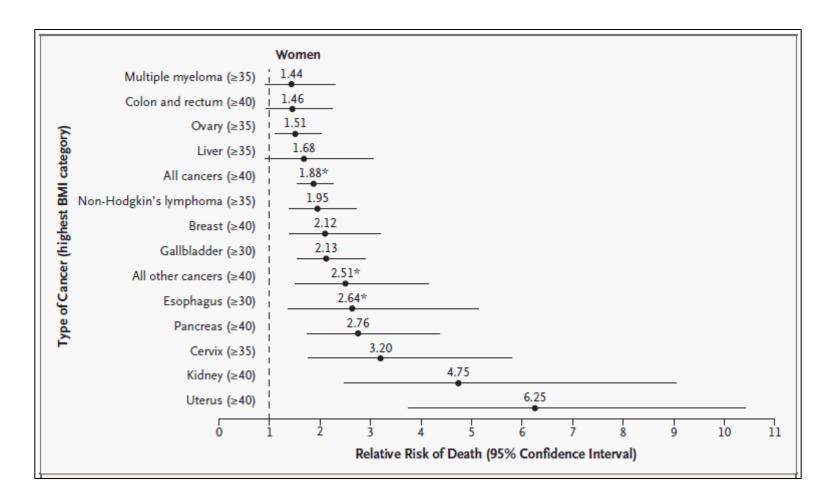
Paracrine Interactions Establish an Obesity → Inflammation → Aromatase Axis



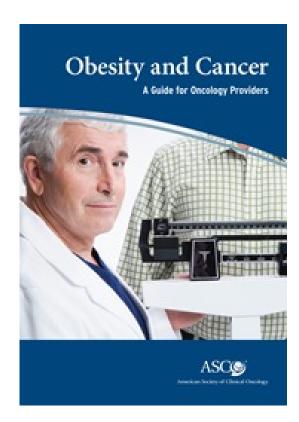
Obesity Weight Loss (OWL) Study

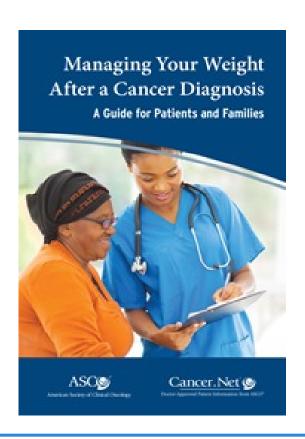


Celecoxib Pilot Study



Docosahexaenoic Acid Intervention Study


Being conducted at MDACC, MSK, Dana Farber, Columbia, Cornell, Baylor


Obesity and Cancer Outcomes

Case

- 64 year old postmenopausal female
- Diagnosed with stage I ER/PR+, HER2- IDC on therapy with adjuvant AI
- BMI > 30

Conclusions & Future Directions

- Obesity is associated with risk and worse prognosis in a growing number of malignancies
- Obesity is associated with systemic inflammation manifest as CLS and circulating proinflammatory mediators
- White adipose tissue inflammation in the breast is associated with menopausal status, BMI, and adipocyte size
- The obesity → inflammation → aromatase axis is active in the breasts of many women

Conclusions & Future Directions

 Do CLS represent a histologic biomarker of risk and/or prognosis?

Need for non-invasive detection of adipose inflammation

Acknowledgements

MSKCC

- Clifford Hudis, MD
- Neil lyengar, MD
- Patrick Morris, MD
- Monica Morrow, MD
- Dilip Giri, MD
- Jay Boyle, MD
- Luc Morris, MD
- Ronald Ghossein, MD
- David Pfister, MD
- Matthew Fury, MD
- Breast Medicine Service

Rockefeller University

- Peter Holt, MD
- Jose Aleman, MD, PhD
- Jeanne Walker, RN

Weill Cornell Medical College

- Andrew Dannenberg, MD
- Kotha Subbaramaiah, PhD
- Kathy Zhou, PhD
- Louise Howe, PhD
- Domenick Falcone, PhD
- Abigail Haka, PhD
- Baoheng Du, MD
- Priya Bhardwaj, BA
- Michael Harbus, BS

Funding

- Breast Cancer Research Foundation
- Metastasis Research Center, MSKCC
- NIH/NCI Division Cancer Prevention
- Sass Foundation (Carol Litwin Memorial Fellowship in Breast Cancer Research)
- Prostate Cancer Foundation