Review of Breast Cancer ASCO abstracts (neo-adjuvant and metastatic)

GASCO annual meeting

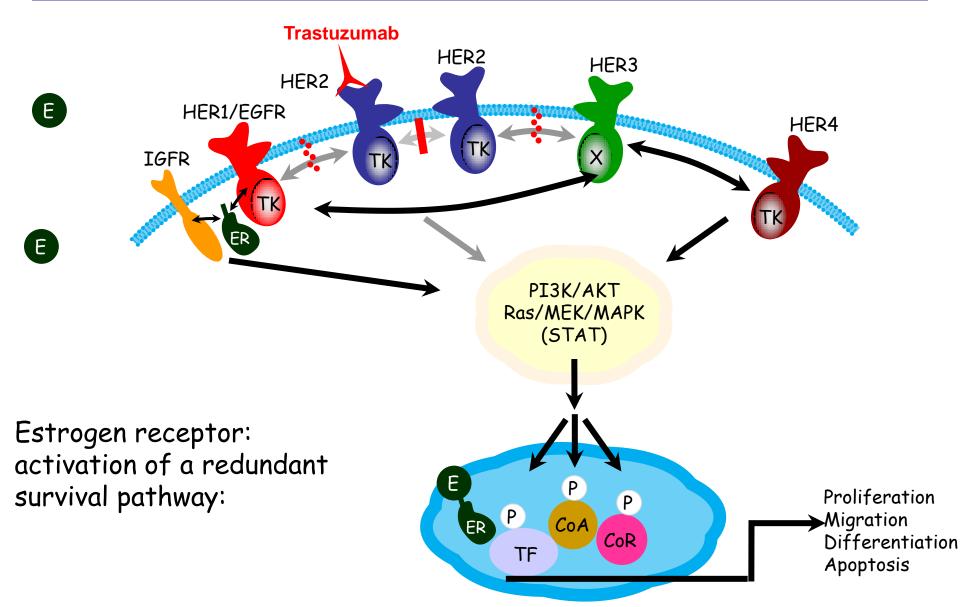
August 27th 2011, Atlanta, GA

EMORY UNIVERSITY

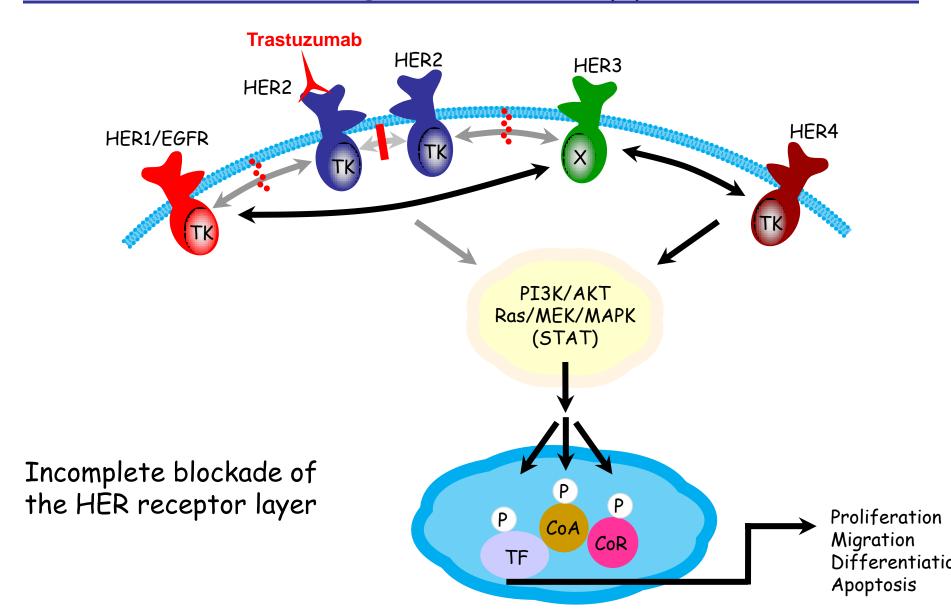
Ruth M. O'Regan, MD

Associate Professor of Hematology and Oncology
Chief of Hematology and Medical
Oncology Georgia Cancer Center for Excellence

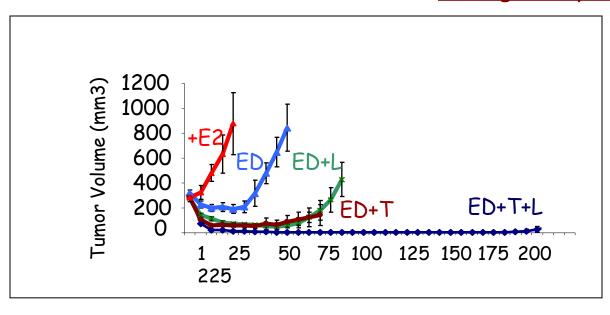
Louisa and Rand Glenn Family Chair in Breast Cancer Research


TBCRC 006: A multicenter phase II study of neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 overexpressing breast cancer

Jenny C. Chang, I. A. Mayer, A. Forero-Torres, R. Nanda, M. P. Goetz, A. A. Rodriguez, A.C. Pavlick, T. Wang, S. G. Hilsenbeck, C. Gutierrez, R. Schiff, C. K. Osborne, M. F. Rimawi


Abstract 505

Mechanisms of Resistance to HER Targeted Therapy

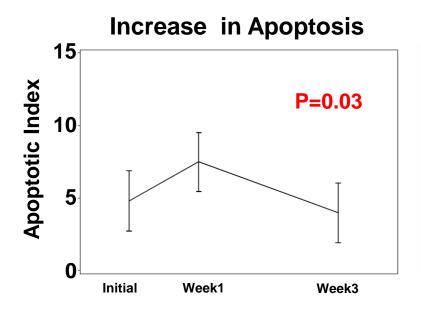


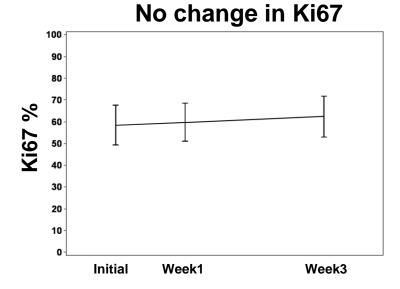
Mechanisms of Resistance to HER Targeted Therapy

Superiority of Dual Blockade In Xenograft Models

Estrogen Deprivation (ED)

Days

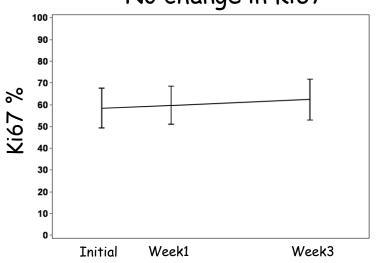

```
T – Trastuzumab
L – lapatinib
L+T – Trast + Lap
```


Neoadjuvant HER2 Targeted Therapy

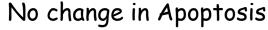
- Two sequential neoadjuvant trials
 - Trastuzumab: from 2000 to 2005
 - Lapatinib: from 2005 to 2008
- IHC 3+/FISH amplified
- Locally advanced breast cancers (Med = 10 and 6 cm)
- Primary cancers amenable to serial biopsies
- Adequate cardiac function
- ECOG PS 0, 1

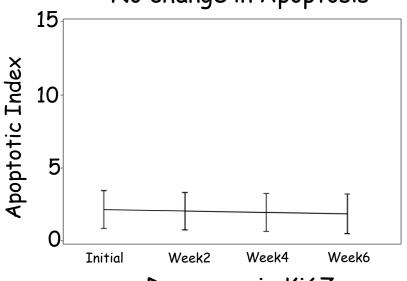
Mechanism of Action: T vs. L

Trastuzumab:

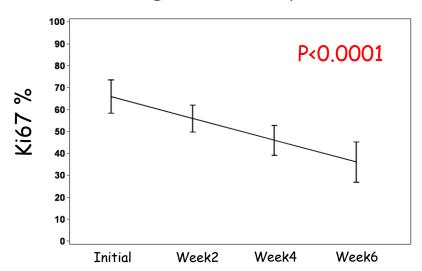


Mechanism of Action: Tvs. L

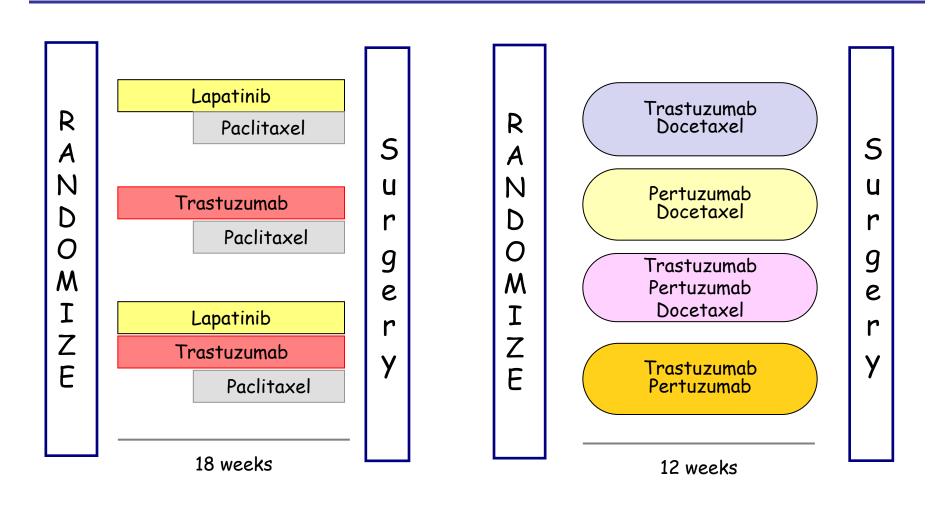

Trastuzumab:


Increase in Apoptosis P=0.03 P=0.03 Initial Week1 Week3

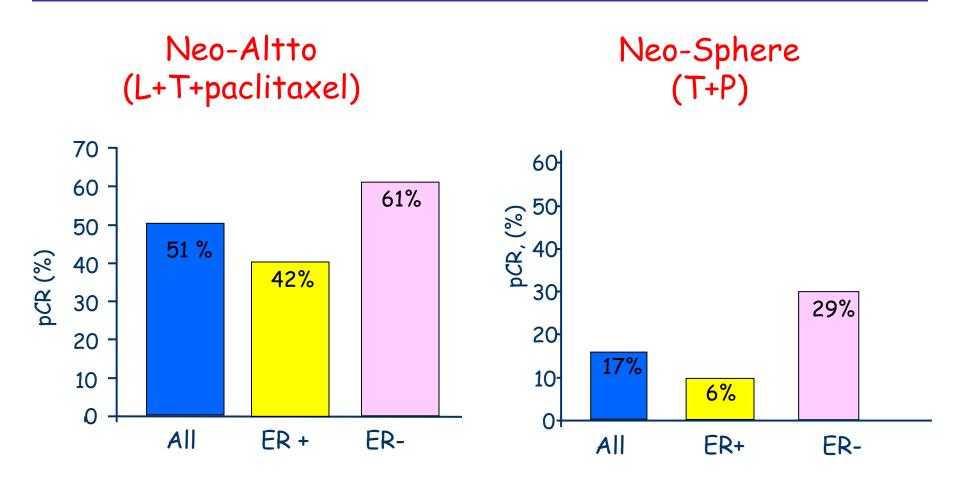
No change in Ki67



Lapatinib:



Decrease in Ki67


Dual Blockade with Taxanes: NeoAltto and NeoSphere: Study Design

Neo-Altto

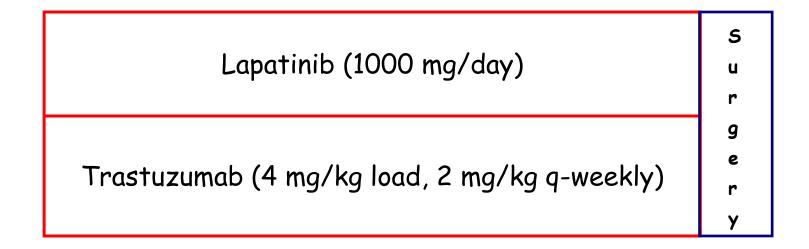
Neo-Sphere

Neo-Altto and Neo-Sphere: path CR rates

Regimen

- Neoadjuvant 12-week regimen
- Weekly T (load 4 mg/kg i.v, then 2mg/kg) + Daily L 1000 mg p.o
- ER+ patients also received letrozole (plus goserelin, if premenopausal)
- · Biopsies:
 - Baseline, week 2, 8, 12 (surgery)

Eligibility Criteria


HER2 +: IHC 3+/ FISH amplified

T>3cm, or >2cm with palpable lymph nodes

Adequate cardiac function

• ECOG PS 0, 1

Neoadjuvant Lapatinib & Trastuzumab Without Chemotherapy: Study Schema

Pathologic Response

- Evaluated after completion of neoadjuvant therapy
- · Definition:
 - pCR (path complete response):
 Absence of invasive cancer in breast
 - npCR (near path complete response):
 Residual disease (<1 cm) in breast

Patients Demographics (N=66)

· BCM, Alabama, Vanderbilt, Chicago, Mayo

Median age: 50 years

Median Size: 6 cm (1.5, 30cm)

T>5 cm: 39 (62%)

Menopausal: Pre: 36 (54%)

Post: 30 (46%)

Patients Demographics (N=66)

• Estrogen Receptor: ER+: 41 (62%)

ER-: 25 (38%)

Progesterone Receptor: PR+: 29 (44%)

PR-: 31 (47%)

NK: 6 (9%)

• ER+/PR+: 29 (48%)

• ER+/PR-: 10 (17%)

• ER-/PR+: 0 (0%)

• ER-/PR-: 21 (32%)

Adverse Events (N=65)

Discontinued therapy: 5 (8%)

Grade 1-2:

Gastrointestinal

- Diarrhea: 43 (66%)

- Nausea: 20 (31%)

Skin

- Acneiform rash: 30 (46%)

Abnormal LFTs: 16 (25%)

· Grade 3-4

Abnormal LFTs: 3 (<5%)

Clinical Response (N=64)

Overall RR: 48/64 (75%)

- Partial Response: 28/64 (44%)

- Complete Response: 20/64 (31%)

• ER pos: 32/39 (82%)

- Partial Response: 17/39 (44%)

- Complete Response: 15/39 (38%)

• ER neg: 16/25 (64%)

- Partial Response: 1125 (28%)

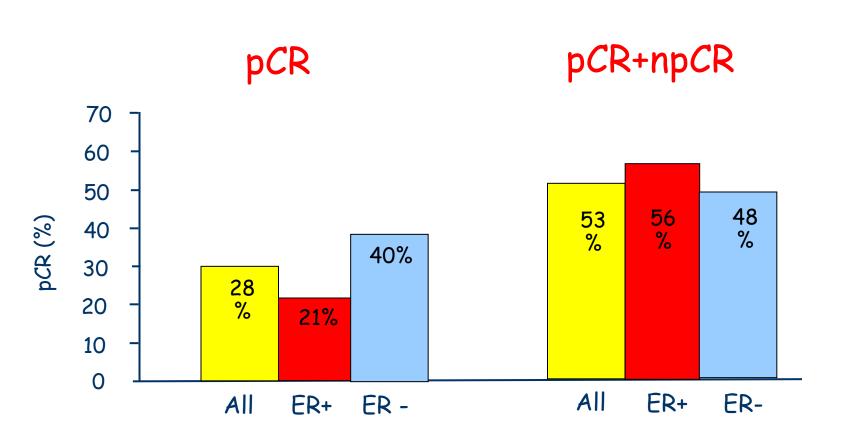
- Complete Response: 5/25 (20%)

Pathologic Response (N=64)

• pCR rates: 18/64 (28%)

-ER pos: 8/39 (21%)

-ER neg: 10/25 (40%)


Pathologic Response (N=64)

pCR+npCR rates: 34/64 (53%)

-ER pos: 22/39 (56%)

-ER neg: 12/25 (48%)

Pathologic Response

Conclusions

- Well tolerated regimen, targeted therapy alone without chemotherapy
- High clinical response rate
- High pCR rates
 - 28% pCR rate, 40% in ER neg
 - ER pos, 56% had residual disease <1cm
- HER2 blockade with lapatinb and trastuzumab with estrogen deprivation associated with high pathologic responses

Correlation of Molecular Effects and Pathologic Complete Response to Preoperative Lapatinib and Trastuzumab, Separately and Combined Prior to Neoadjuvant Breast Cancer Chemotherapy

Frankie Ann Holmes, MD
VA Espina, LA Liotta, YM Nagarwala, M Danso, K McIntyre,
D Osborne, T Anderson, A Florance, J Mahoney,

JA O'Shaughnessy

Rationale

- 15% relapse despite adjuvant HER2-based therapy
- Preoperative therapy allows tumor molecular interrogation
- The mechanism of lapatinib HER2 inhibition differs from trastuzumab

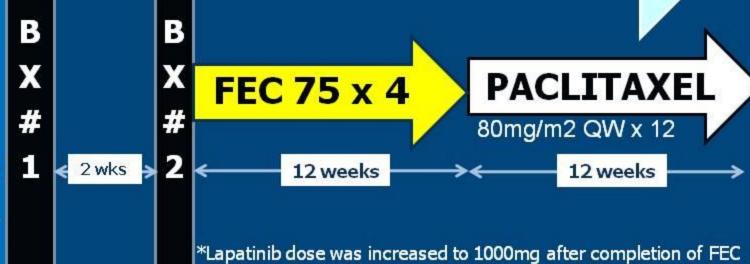
Aim

 Prospectively define molecular features seen in breast tumors with pathologic complete response (pCR) or resistance (NO-pCR) to preoperative HER2directed therapy

Romond EH et al. *N Engl J Med.* 2005;353(16):1673-1684

Slamon DJ et al. *Proc San Antonio Breast Cancer Symp* 2009; Abs 62

Trial Design


Eligibility

- Stage II,
 III biopsy proven
 invasive,
 HER2
 positive
- Adequate organ reserve, performance status 0-1
- Written Inf Consent

Arm 1: Trastuzumab 4mg/kg \rightarrow 2 mg/kg, QWk

Arm 2: Lapatinib 1250mg QD

Arm 3: Lapatinib 750mg QD*+Trastuzumab as above

†Optional 3rd biopsy was taken from surgical tissue

Analysis: Intention to Treat–Evaluable (ITT-E): ITT patients with evaluable tumor responses. Evaluable: ≥75% compliant to chemotherapy; had surgery

SURGERY

eeting

Tumor Tissue Processing

Biopsy

Stabilize phosphoproteins

Laser capture microdissection

Coll Anti-On A

49 evaluable pre/post biopsy pairs in 3 treatment arms:

Trastuzumab n=20

Lapatinib n=17

•T + L n=12

Reverse phase protein microarray More sensitive than IHC Signal pathway map

Patient and Tumor Characteristics: Intention to Treat (ITT)*

	T	<u>L</u>	T+L	Total
	(n=33)	(n=34)	(n=33)	(N=100)
Median age, years	54.0	52.0	50.0	51.5
Base ECOG 0	94	88	97	93
T2/T3, %	67/24	35/32	67/18	56/25
NO/N1, %	55/36	32/47	39/42	42/42
ER+/PR+, %	45/30	41/26	58/48	48/35
IHC 3+/FISH+, %	67/82	76/71	79/70	74/74

T=trastuzumab; L=lapatinib.

^{*}All patients randomized regardless of actual treatment.

100 pts Randomized 8/07 - 2/10 Core Needle Biopsy PRE & POST HER2-RX

Trastuzumab n=33 (26) ⁸

Lapatinib n=34 (29) ¹

T+L n=33 (23) ⁸

T not evaluable* n=7

L not evaluable* n=5

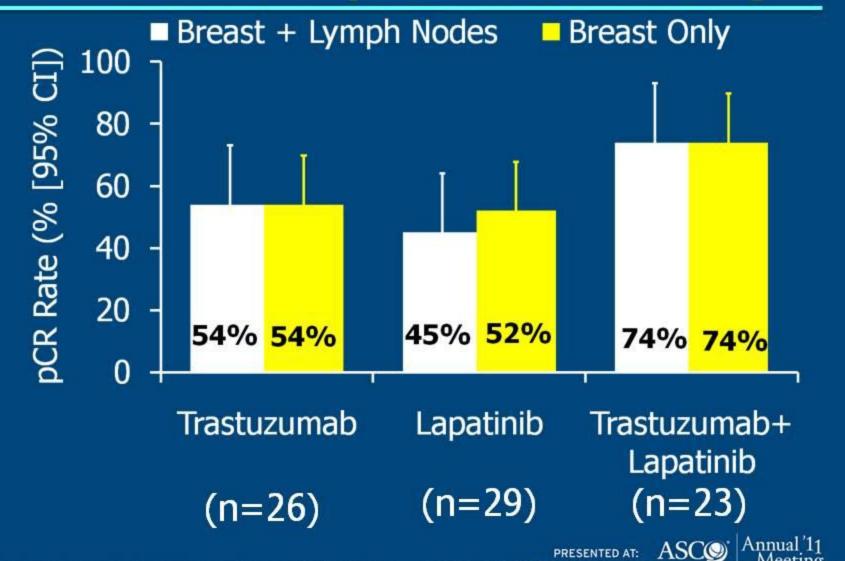
T+L not eval.* n=10

T not paired pre/post tx n=6

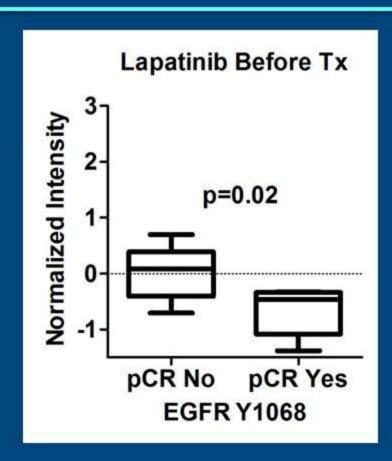
L not paired pre/post tx n=12 T+L not paired pre/post tx n=11

T pairs for analysis† n=20

L pairs for analysis n=17


T+L pairs for analysis n=12

*Inevaluable tumor responses * Had Surg, >75% Rx †Patients with paired biopsies were analyzed


pCR in ITT-E in Breast + Lymph Nodes and Breast Only Correlated Closely

Molecular Correlations from Baseline Biopsies* with Tumor Response

- p-EGFR Tyr1068
- FOXO1A/3A-Thr 24/32
- (STAT5 day 14*)
- Autophagy
- Tumor "social" network

Baseline EGFR-Tyr1068 Phosphorylation: Lapatinib NO-pCR

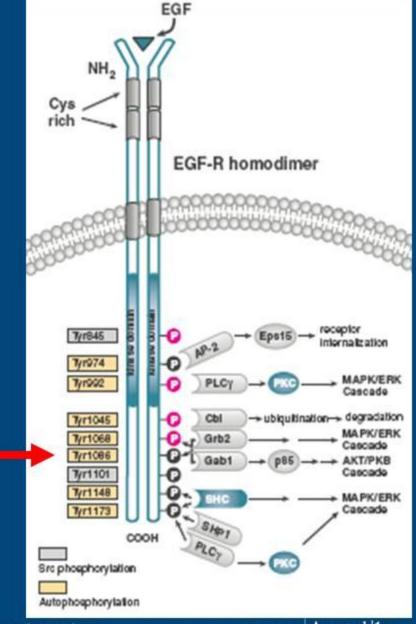
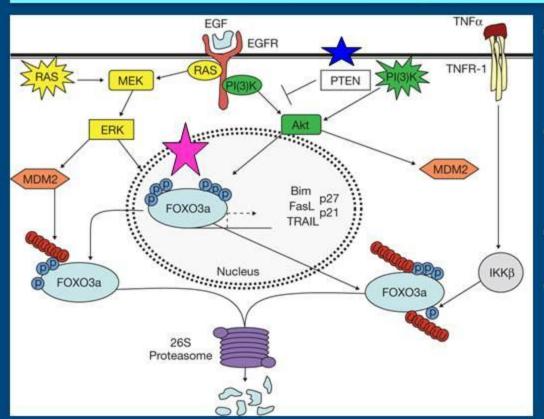
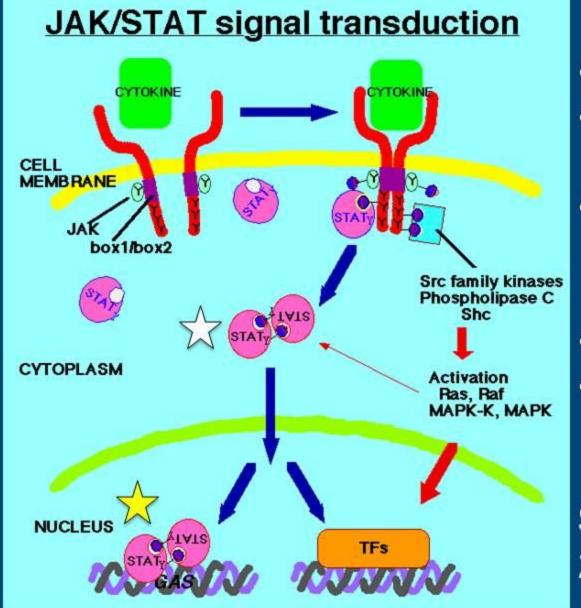



Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

FOX01/03a: Forkhead Box 03 **Transcription Factor**

Krol J et al. Mol Cancer Ther 2007; 6(12 Pt 1):3169

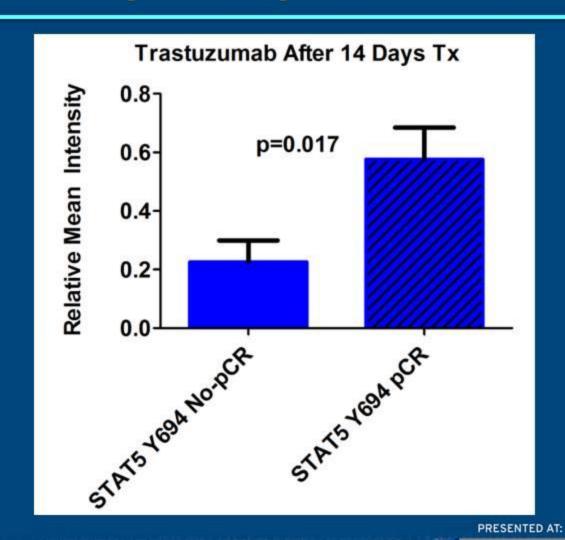
- Triggers cell cycle arrest & apoptosis
- Must be in nucleus to do this
- Phosph'n inhibits
- · →exit nucleus → no transcript'n control
- IGFR1 AKT/PI3K → p→suppress death


Wu Y et al. Cancer Res 2010; 70:5475 PRESENTED AT: ASCO Annual '11

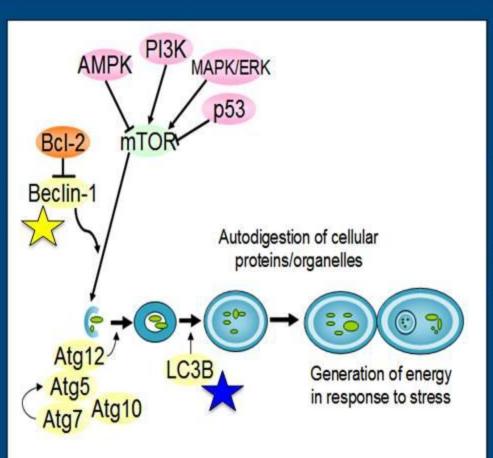
Protein Ratios in <u>Baseline</u> Biopsy Predictive for Subsequent pCR in ALL arms

PhosphoPTEN to phosphoFOXO (p=0.01)

- NO-pCR mean ratio= 0.04 (n=22) *
- pCR mean ratio= 2.79 (n=27) *
- PI3 Kinase to phosphoFOXO (p=0.039)
- NO-pCR mean ratio = -0.2 (n=22)
- pCR mean ratio = 3.23 (n=27)


STAT5

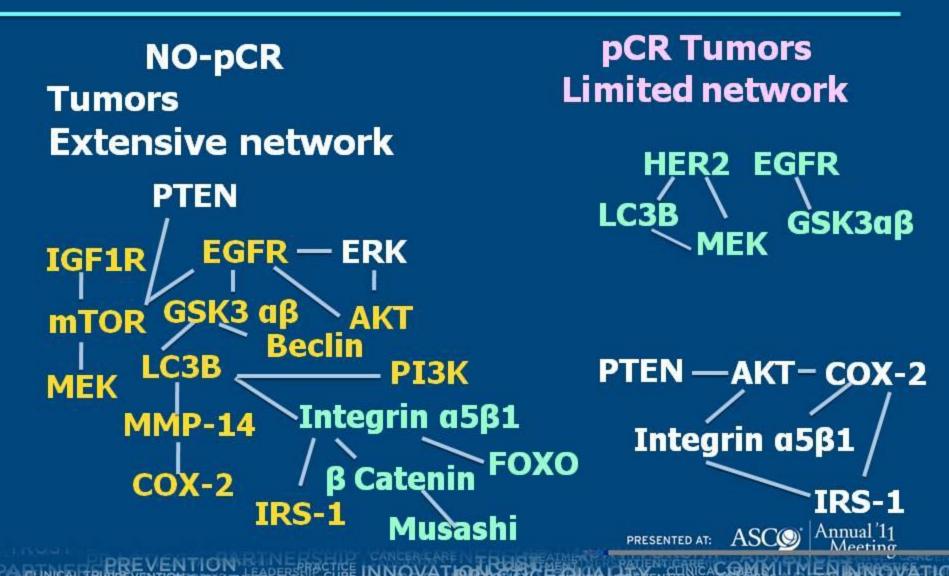
- Transcript'n factor
- downstream from EGFR, HER2
- Phosphorylat'n→ activat'n, nucleus translocation
- E-cadherin
- Phosphorylation
- →


 invasion,
 better prognosis
 Sultan Oncogene
 2005; Peck JCO '11

Trastuzumab - Day 14 Proteins by pCR Adaptive Response: pSTAT5 Increased in pCR

Autophagy Pathway Protects Cells during Starvation, Hypoxia, Stress

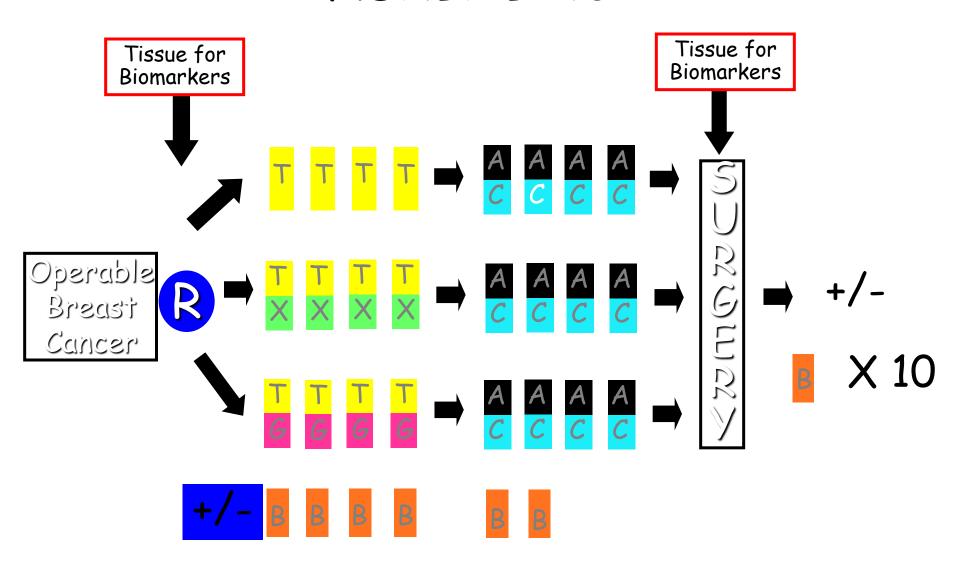
- Survival pathway in metabolic, hypoxic, chemo stress
- Active @ hypoxic tumor regions
- mTOR regulates
- Prevent cell injury from "toxic wastes" from damaged protein & organelle by digest & recycle
- LC3B: is marker, Beclin-1 required


RESENTED AT: ASCO Annual '11

Autophagy Pathway at Baseline: Activated→NO-pCR; Not Active→pCR

NO-pCR: LC3B Baseline linkage with analyte	SR (p<0.001)
· Beclin 1	0.88
• MMP14	0.83
pCR: LC3B Baseline linkage with analyte:	SR (p<0.001)
• HER2	0.88
• Stat5 Y694 w LC3B	0.86

Protein Signal Pathway Interconnections in Baseline Biopsies


Summary and Conclusions

- This exploratory study identified phenotypes of pCR/NO-pCR from phosphorylation profiles at baseline and after a 2-week run-in of a HER2-directed agent
 - pEGFR Tyr1068 baseline: Lapatinib NO-pCR;
 - Baseline ratios of pFOXO to PTEN, PI3K correlated with response
 - pSTAT5 after trastuzumab correlated with pCR
 - Activation of autophagy at baseline correlated with NO-pCR to ALL therapies
 - NO pCR tumors are highly networked
- The pathway to accelerating the cure of breast cancer is in every oncologist's office if networked to high quality, tissue-based research trials. ASCO Annual'11 Meeting

NSABP Protocol B-40 The Effect on pCR of Bevacizumab and/or Antimetabolites Added to Standard Neoadjuvant Chemotherapy

Harry D. Bear, Gong Tang, Priya Rastogi, Charles E. Geyer, Jr., André Robidoux, James N. Atkins, Luis Baez-Diaz, Adam Brufsky, Rita S. Mehta, Louis Fehrenbacher, Eduardo R. Pajon, Francis M. Senecal, Rakesh Gaur, Richard G. Margolese, Paul T. Adams, Howard M. Gross, Joseph P. Costantino, Sandra M. Swain, Elfetherios P. Mamounas, Norman Wolmark

Endpoints: pCR, cCR, DFS, gene expression patterns

NSABP B-40 Primary Aims

- To determine whether adding capecitabine or gemcitabine to docetaxel followed by AC will increase the pathologic complete response (pCR) rates in the breast
 - pCR = no invasive cancer in breast; may have DCIS
- To determine whether the addition of bevacizumab to docetaxel/anthracyclinebased regimens will increase pCR rates in the breast

NSABP B-40 Selected Patient Eligibility Criteria

- · Palpable tumor; diameter ≥ 2.0 cm
- Invasive adenocarcinoma by core needle biopsy
- · HER-2 negative
- T2 or T3 tumor
- · cN0, cN1 or cN2a
- Normal LVEF

NSABP B-40 Stratification Factors

- Clinical Tumor Size (2.0 4.0 cm, > 4.0 cm)
- Clinical Nodal Status (negative, positive)
- Hormone Receptor Status (ERpositive and/or PgR-positive, ERand PgR-negative)
- Age (< 50, > 50)

NSABP B-40 Accrual

Accrued 1,206 patients over 42 months
 (1/5/2007 - 6/30/2010)

NSABP B-40 Patient Characteristics

· <u>Age</u>

Race

- White 83%
- Black 13%
- Other/Unk 3%

· Tumor size

_	2-4	cm	46	%
		_ , , ,		

Clinical Nodal Status

- Pos. 47%
- Neg. 53%

NSABP B-40 Patient Characteristics

•	Tumor	Grad	e*
	<u> </u>	<u>Oi uu</u>	

- Well 7%

- Moderate 36%

- Poor 56%

- Unknown 1%

HR status*
 «Pos. 59%
 «Neg. 41%

^{*} Based on institutional assessments

NSABP B-40 Primary Aims

- To determine whether adding capecitabine or gemcitabine to docetaxel followed by AC will increase the pathologic complete response (pCR) rates in the breast
- To determine whether the addition of bevacizumab to docetaxel/anthracycline-based regimens will increase pCR rates in the breast

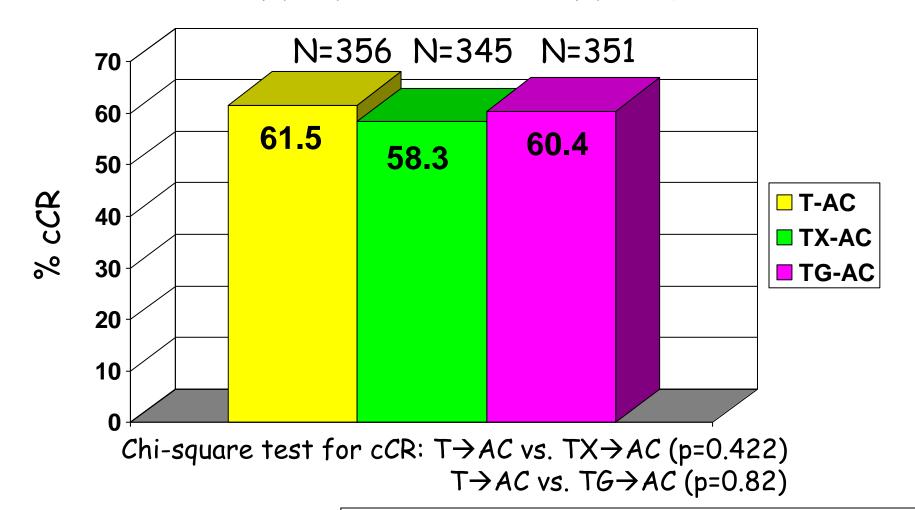
NSABP B-40 Overall Maximum Toxicity* (%)

GRADE	$T \rightarrow AC$ (396)	$TX \rightarrow AC$ (399)	T <i>G</i> → <i>AC</i> (396)
0-2	45	31	27
3	48	55	61
4	7	14	12
5	<1	<1	0

^{*} Toxicity information available from 1191 patients.

NSABP B-40 Neutropenia* (%)

GRADE	$T \rightarrow AC$ (396)	$TX \rightarrow AC$ (399)	TG→AC (396)
0-2	85	79	65
3	10	13	26
4	5	7	9
5	0	0	0

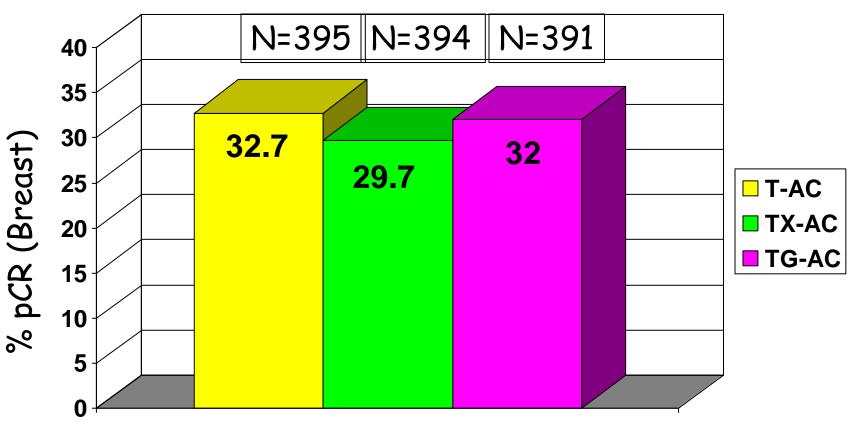

^{*} Toxicity information available from 1191 patients.

NSABP B-40 Hand-Foot Syndrome* (%)

GRADE	$T \rightarrow AC$ (396)	$TX \rightarrow AC$ (399)	TG→AC (396)
0-2	97	77	99
3	3	23	1

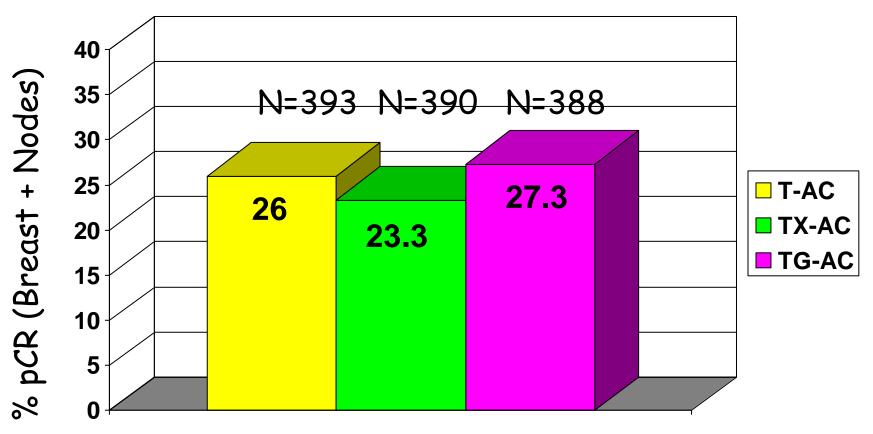
^{*} Toxicity information available from 1191 patients.

NSABP B-40 Clinical Complete Responses After All Neoadjuvant Therapy by Chemotherapy Regimen



of missing clinical response status=154

NSABP B-40 Surgery Type


	$T \rightarrow AC$	$TX \rightarrow AC$	$TG \rightarrow AC$
No surgery	2 (<1)	7 (2)	5 (1)
Lumpectomy	179 (45)	171 (43)	196 (50)
Mastectomy	213 (54)	221 (55)	194 (49)
Total	394	399	395

NSABP B-40 Pathologic Complete Response (Breast)

Chi-square test: $T \rightarrow AC$ vs $TC \rightarrow AC$ (p=0.411) $T \rightarrow AC$ vs. $TG \rightarrow AC$ (p=0.896)

Pathologic Complete Response (Breast and Nodes)

Chi-square test: $T \rightarrow AC$ vs. $TC \rightarrow AC$ (p=0.443) $T \rightarrow AC$ vs. $TG \rightarrow AC$ (p=0.726)

NSABP B-40 Primary Aims

- To determine whether adding capecitabine or gemcitabine to docetaxel followed by AC will increase the pathologic complete response (pCR) rates in the breast
- To determine whether the addition of bevacizumab to docetaxel/anthracycline-based regimens will increase pCR rates in the breast

NSABP B-40 Overall Maximum Toxicity* (%)

w/o BEV (596)	BEV (595)
41	27
49	61
9	12
<1	<1
	(596) 41 49 9

^{*} Toxicity information available from 1191 patients.

NSABP B-40 Hypertension* (%)

GRADE	w/o BEV (596)	BEV (595)
2	1	13
3	<1	10
4	0	<1
5	0	0

^{*} Toxicity information available from 1191 patients.

NSABP B-40 Hand-Foot Syndrome* (%)

GRADE	w/o BEV (596)	BEV (595)
2	11	15
3	8	11

^{*} Toxicity information available from 1191 patients.

NSABP B-40 Mucositis* (%)

GRADE	w/o BEV (596)	BEV (595)
2	10	20
3	3	5
4	0	0
5	0	0

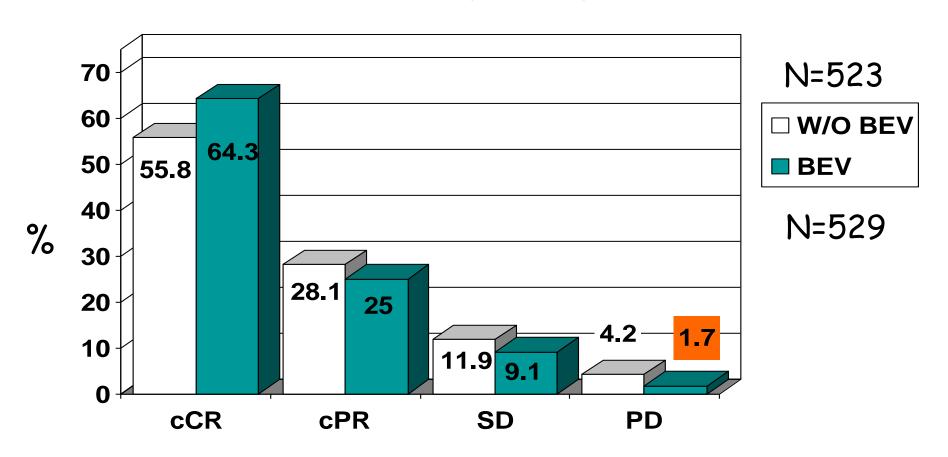
^{*} Functional/Symptomatic

Toxicity information available from 1191 patients.

NSABP B-40 Left Ventricular Systolic Dysfunction* (%)

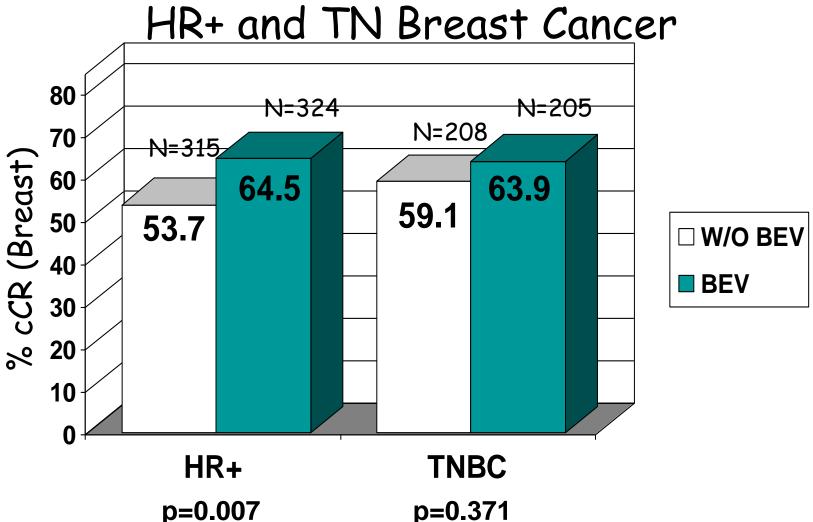
GRADE	w/o BEV (596)	BEV (595)
0-2	100	99
3	<1	1
4	<1	<1
5	0	0

^{*} Toxicity information available from 1191 patients.


Completion/Discontinuation of Neoadjuvant Treatment in Arms Without BEV

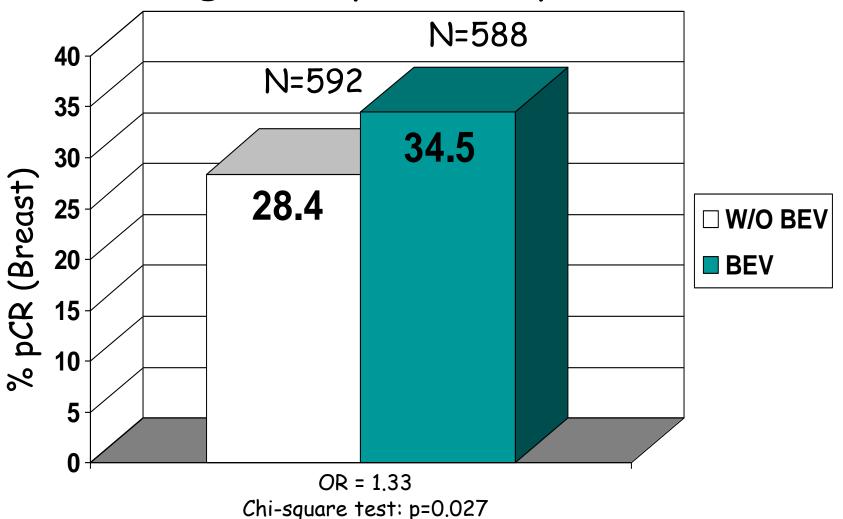
	N=580
Completed neoadjuvant per	488 (84%)
protocol	
Discontinued early	92 (16%)
- AE from docetaxel	16 (3%)
- AE from AC	11 (2%)
- AE from multiple therapies	6 (1%)
- New lesion/progression	27 (5%)
- Alternative therapy	8 (1%)
- Death	1 (<1%)
- Other	23 (4%)

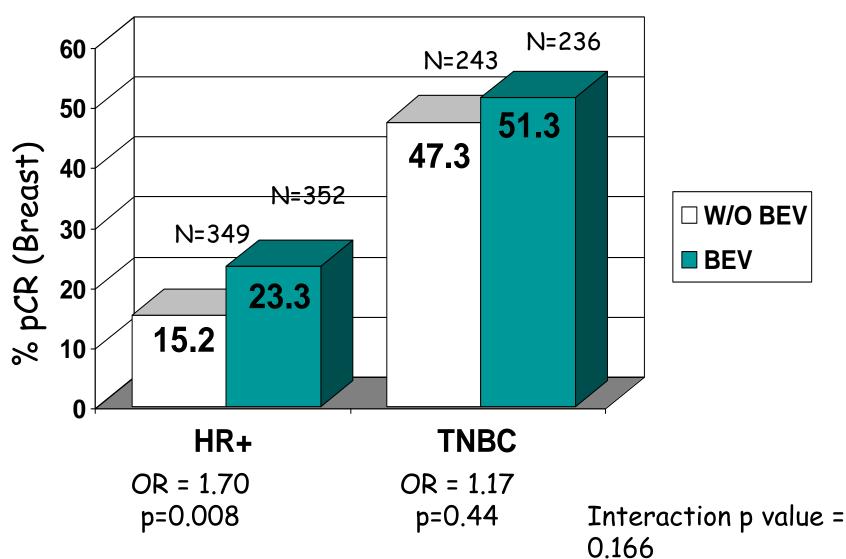
Completion/Discontinuation of Neoadjuvant Treatment in Arms With BEV


	N=576
Completed neoadjuvant per protocol	460 (80%)
Discontinued	116 (20%)
- AE from docetaxel	12 (2%)
- AE from AC	10 (2%)
- AE from Bev	30 (5%)
- AE from multiple therapies	25 (4%)
- New lesion/progression	10 (2%)
- Alternative therapy	2 (<1%)
- Death	0 (0%)
- Other	27 (5%)

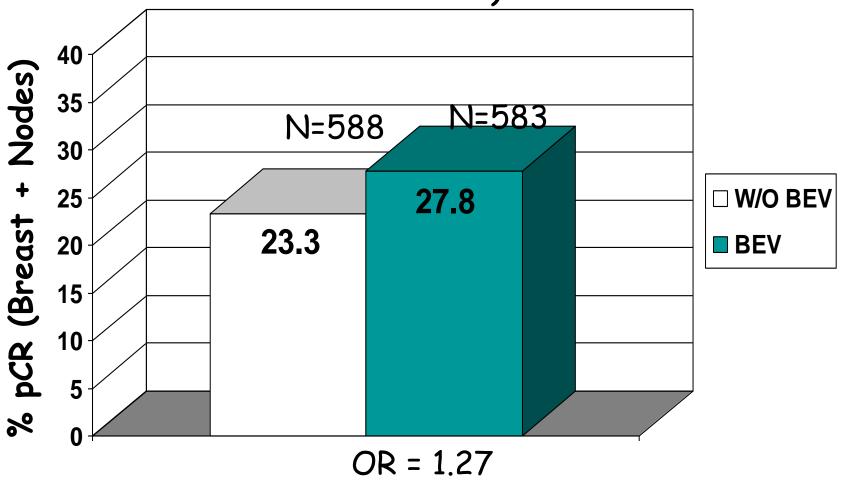
Clinical Responses After All Neoadjuvant Therapy Based on Bevacizumab Administration

Chi-square test for cCR: p=0.006

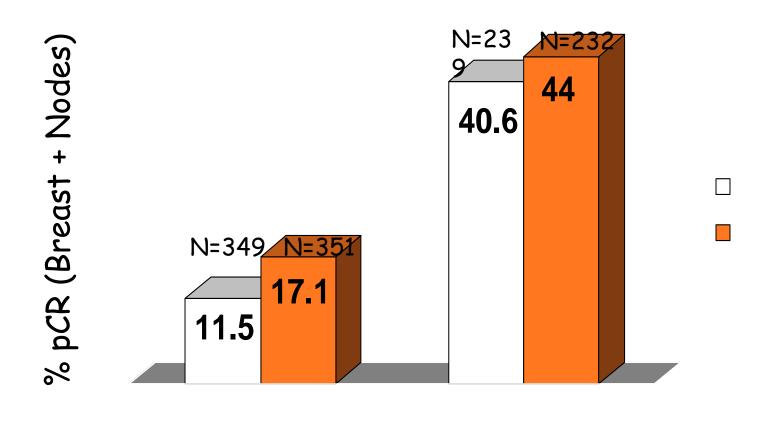

NSABP B-40 Clinical Complete Responses for


NSABP B-40 Surgery Type

	w/o BEV	BEV
No surgery	5 (<1)	9 (1)
Lumpectomy	267 (45)	279 (47)
Mastectomy	321 (54)	307 (52)
Total	593	595


NSABP B-40 Pathologic Complete Response (Breast)

Pathologic Complete Responses (Breast) for HR+ and TN Breast Cancer



Pathologic Complete Response (Breast and Nodes)

Chi-square test: p=0.09

Pathologic Complete Response (Breast and Nodes) for HR+ and TN Breast Cancer

Interaction p value = 0.256

NSABP B-40 Conclusions to Date

 Neither Capecitabine nor Gemcitabine added to Docetaxel increased clinical or pathologic response rates

 Adding Cape or Gem <u>DID</u> increase toxicity

NSABP B-40 Conclusions to Date

- Bevacizumab added to regimens based on T followed by AC significantly increased clinical and pathologic complete response rates
 - Most apparent in HR+ subset
 - However, p values for interaction were <u>not</u> significant
 - Bev did not change surgical options

NSABP B-40 Questions Remaining

- Impact of Bev on OS and DFS
 - Long-term follow-up of B-40 and other trials recently completed or in progress (e.g., BETH, BEATRICE, GeparQuinto, E5103, B-46)
- Biologic correlates/predictors of response to chemotherapy and/or specific agents
- Validate Residual Cancer Burden (RCB) as predictor of outcome
- Effect of pre-op and post-op Bev on wound healing

A Randomized Phase III Study of Iniparib (BSI-201) in Combination with Gemcitabine and Carboplatin in Metastatic Triple Negative Breast Cancer (mTNBC)

Joyce O'Shaughnessy,^{1,2,3} Lee Schwartzberg^{4,5} Michael A. Danso,^{3,6} Hope Rugo,⁷ Kathy Miller,⁸ Denise Yardley,^{9,10} Robert W. Carlson,¹¹ Richard Finn,¹² Eric Charpentier,¹³ Sunil Gupta,¹³ Monica Freese,¹³ Anne Blackwood-Chirchir,¹⁴ and Eric P. Winer¹⁵

¹Baylor Sammons Cancer Center, ²Texas Oncology; ³US Oncology, Dallas, TX; ⁴Accelerated Community Oncology Research Network, Memphis, TN; ⁵The West Clinic, Memphis, TN 6Virginia Oncology Associates, Norfolk, VA; ⁷University of California, San Francisco, CA; ⁸Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN; ⁹Sarah Cannon Research Institute, Nashville, TN; ¹¹OTenessee Oncology, PLLC, Nashville, TN; ¹¹Stanford Comprehensive Cancer Center, Palo Alto, CA; ¹²University of California Los Angeles School of Medicine, Los Angeles, CA; ¹³ Sanofi, Paris, France; ¹⁴BiPar Sciences, Inc. South San Francisco, CA, and ¹⁵Dana Farber Cancer Institute, Boston,

Iniparib (BSI-201)

A novel, investigational, anti-cancer agent

In triple negative breast cancer cell lines¹⁻⁴:

Induces cell cycle arrest in the G2/M phase

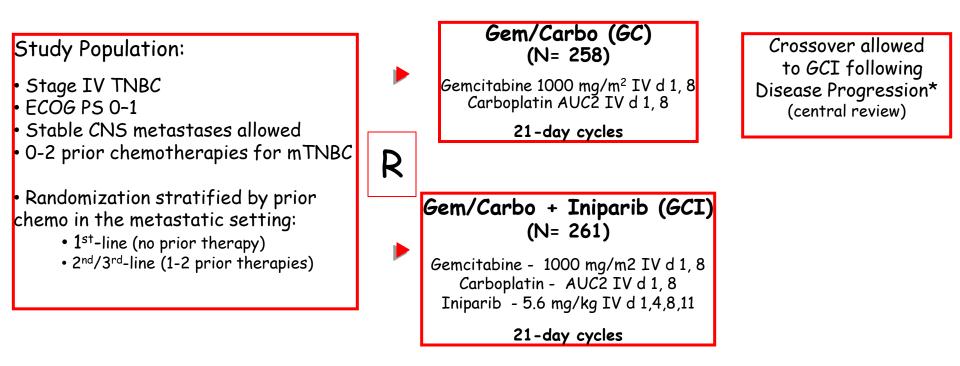
Induces double strand DNA damage g-H2AX foci but does not inhibit PARP 1 and 2 at physiologic drug concentrations

Potentiates cell-cycle arrest induced by DNA damaging agents, including platinum and gemcitabine

Physiologic targets of iniparib and its metabolites are under investigation

Clinical Data:

In a randomized phase 2 study, addition of iniparib to gemcitabine/carboplatin improved CBR, ORR, PFS and OS in patients with mTNB C^5


No potentiation of chemotherapy-related toxicities when iniparib is combined with gemcitabine/carboplatin

^{1.} Ossovskaya V, et al. SABCS 2010, San Antonio, TX. Poster P5-06-09; 2. Ossovskaya V, et al. AACR 2009, Denver, CO. Abstract 5552;

^{3.} Ossovskaya V, et al. AACR 2011, Orlando, FL. Abstract LB-401; 4. Ji et al. AACR 2011, Orlando, FL. Abstract 4527; 5. O'Shaughnessy J, et al. N Engl J Med 2011; 364:205–214.

Schema

Study Design: Multi-center, randomized open-label Phase III Trial

96% (n=152) of progressing patients crossed over to GCI at time of primary analysis

NCT00938652

Study Objectives

```
Primary:
      Co-primary endpoints:
       Overall survival (OS)
       Progression-free survival (PFS)
       Study considered positive if either endpoint
       met
Secondary:
      Objective response rate (ORR)
      Safety, tolerability, and Pharmacokinetics of
```

GCI

Statistical Considerations

Type-I error adjustment for co-primary endpoints

Total alpha level = 0.05 split: 0.04 for OS and 0.01 for PFS

Planned sample size and hypothesis:

```
Total number of planned patients: 420
OS: HR = 0.66, power = 90%, alpha = 0.04 (2-sided)
Total 260 deaths
PFS: HR = 0.65, power = 90%, alpha = 0.01 (2-sided)
Total 322 PFS events
```

Efficacy analyses:

ITT- population based on treatment group assigned at randomization N = 519 (over enrolled due to very rapid enrollment 7/09 - 3/10)

Safety population:

All patients who received at least 1 dose of any study drug

Baseline Characteristics

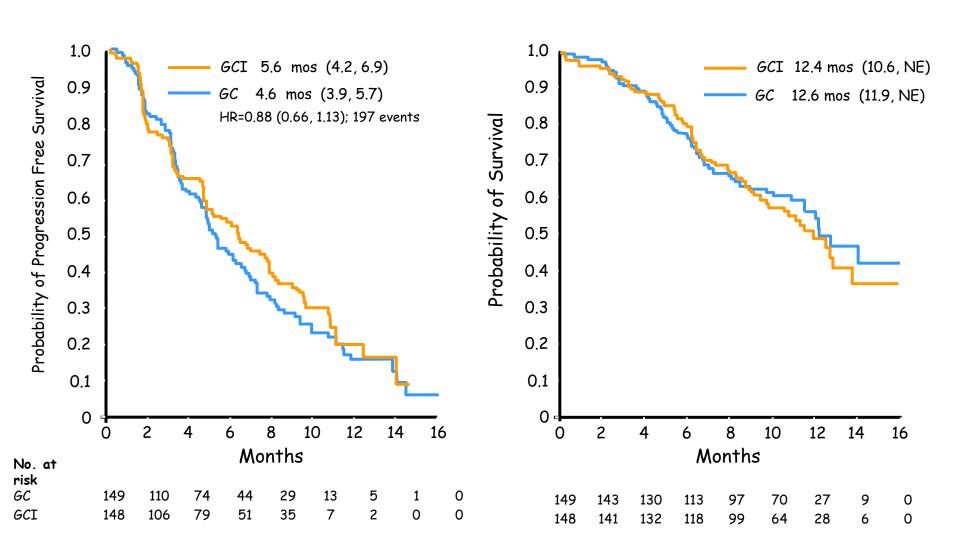
	GC	GCI
	(N=258)	(N=261)
Age, years, median	54	53
ECOG PS, %	<u> </u>	
0 / 1	53 / 45	57/ 42
No. metastatic sites, %		
1	14	8
2	26	34
≥3	60	58
Metastatic site, %	·	
Lung	43	38
Liver	61	62
CNS/Brain	8	8
Bone	30	33
Skin/Soft Tissue	23	25
Lymph nodes	72	76
Breast	19	18

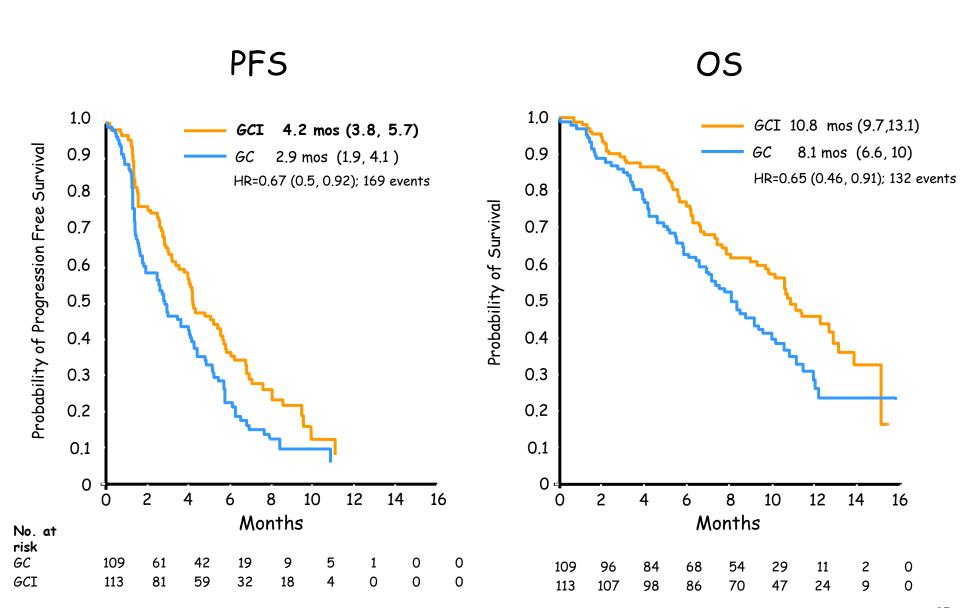

Baseline Characteristics

	<i>GC</i> N=258	<i>GC</i> I N=261
Patients with prior chemotherapies n, %	232 (90)	231 (89)
Prior neoadjuvant or adjuvant	204 (79)	201 (77)
Prior metastatic		
0	148* (57)	147* (56)
≥1	110* (43)	114* (44)
Prior Anthracycline	74	70
Prior Taxane	85	83
Prior Bevacizumab**	32	28
Disease Free Interval (DFI) [†]		
Median	15 months	12 months
≤ 12 months > 12 months	44% 56%	51% 49%
DFI - 1st line	(n=149)	(n=148)
Median	15.9 months	9.5 months
DFI - 2 nd /3 rd line	(n=109)	(n =113)
Median	13.8 months	15.7 months

Treatment Emergent Adverse Events Safety Population

	GC		GCI		
	N=	N= 244		255	
AE	All Grades %	Grade 3/4 %	All Grades %	Grade 3/4 %	
Neutropenia	65	53	71	61	
Febrile Neutropenia	2	2	2	2	
Anemia	62	22	64	18	
Thrombocytopenia	54	24	54	28	
Fatigue	64	6	71	8	
Alanine aminotransferase increased	19	6	28	6	
Dyspnea	27	4	29	6	
Deaths within 30 days of last dose*, n (%)	8 (3.3)		16 ((6.3)	
Adverse Event	2 (0.8)		4 (1.6)		


Efficacy Endpoints - ITT population


Overall Response Rate* - ITT Population

Response, n (%)	<i>GC</i> N = 258	<i>GC</i> I N = 261
Complete response	4 (1.6)	5 (1.9)
Partial response	74(29)	83 (32)
Stable disease	89 (35)	99 (38)
Progressive disease	62 (24)	62 (24)
Inevaluable	29 (11)	12 (4.6)
SD > 6 months	14 (5.4)	19 (7.3)
ORR, n (%) (95% <i>C</i> I)	78 (30) (25–36%)	88 (34) (28–40%)
Clinical Benefit Rate, n (%) [CR +PR +SD(> 6 mos)]	92 (36)	107 (41)

Exploratory Analysis 1st -line ITT Population

Exploratory Analysis 2nd /3rd-line ITT Population

Multivariate Analysis - OS

Evaluate impact of imbalances in specific baseline characteristics on OS per multivariate analyses as specified in the statistical analysis plan (SAP) Analyses based on:

Pre-specified baseline factors: age, disease burden, ECOG PS, line of therapy, race, time since diagnosis of mTNBC, visceral disease, and elevated alkaline phosphatase

Pre-specified baseline factors above - but replace time since diagnosis of mTNBC with Disease Free Interval from primary BC surgery to onset of metastatic disease

Treatment Estimates for OS determined using Multivariate Cox Model

	ITT Pop	ulation	1 st -li	ne	2 nd /3 rd	d-line
	HR	р	HR	р	HR	р
Unadjusted	0.88	0.28	1.1	0.56	0.65	0.012
Using pre-specified baseline factors	0.81	0.08*	0.91	0.62*	0.72	0.07*
Using pre-specified baseline factors with DFI replacement	0.78	0.05*	0.83	0.32*	0.71	0.05*

Multivariate Analysis - PFS

Evaluate impact of imbalances in specific baseline characteristics on PFS

Analyses as described

Treatment Estimates for PFS determined using Multivariate Cox Model

	ITT Pop	TT Population 1 st -line 2 nd /3 rd		1 st -line		-line
	HR	р	HR	р	HR	р
Unadjusted	0.79	0.027	0.88	0.37	0.67	0.011
Using pre-specified baseline factors	0.75	0.006*	0.81	0.15*	0.72	0.033*
Using pre-specified baseline factors with DFI replacement	0.74	0.004*	0.80	0.117*	0.71	0.031*

Conclusions

The addition of iniparib to GC did not improve PFS or OS according to the pre-specified criteria for these co-primary endpoints 96% of GC patients eligible for crossover at time of analysis crossed over to GCI and received median of 2 cycles of therapy

Exploratory analyses of PFS and OS by prior therapy suggests:

Potential efficacy benefit among 2nd/3rd line patients

Confirmatory study needed

GCI safety profile confirmed; toxicity comparable to GC arm

mTNBC population is highly heterogeneous on intrinsic subtyping

Biomarker analyses underway to evaluate patient populations that may benefit from iniparib

LANDSCAPE: a FNCLCC phase II study with lapatinib and capecitabine in patients with brain metastases from HER2-positive metastatic breast cancer before whole brain radiotherapy

Thomas BACHELOT, Gilles ROMIEU, Mario CAMPONE, Véronique DIERAS, Claire CROPET, Florence DALENC, Marta JIMENEZ, Emilie LE RHUN, Jean-Yves PIERGA, Anthony GONCALVES, Marianne LEHEURTEUR, Julien DOMONT, Maya GUTIERREZ, Hervé CURE, Jean-Marc FERRERO, Catherine LABBE- DEVILLIERS

Brain metastases are an important issue in the management of HER2+ metastatic breast cancer patients

- Incidence up to 30 to 40 %
- Strong contribution to morbidity and mortality
- Few therapeutic options beside whole brain radiation therapy (WBR) when multiple localizations

Lapatinib and capecitabine

- Have been approved for trastuzumab resistant HER2+ MBC
 - Objective response rate: 23% (95% CI: 16-29)
 - Median time to progression: 6.2 months
- Have shown notable activity in patients with progressive BM after WBR
 - CNS volumetric response rate: 20% (95% CI: 3-33.7)
 - Median time to progression: 3.65 months (95% CI: 2.4-4.4)

LANDSCAPE PROTOCOL

Objective:

 To assess the clinical benefit of lapatinib plus capecitabine in combination for BM in HER2+ MBC patients not previously treated with WBR

Upfront systemic treatment of patients with BM allows:

- Concomitant treatment of extra CNS disease
- Delay WBR and associated toxicities

LANDSCAPE PROTOCOL

- Key Inclusion Criteria
 - HER2+ MBC
 - Newly diagnosed brain metastases, at least 1 cm in diameter (T1 gado. MRI)
 - Not candidate for brain surgery
 - Any previous treatment except WBR, lapatinib or capecitabine
 - ECOG PS status 0-2
- Treatment: L: 1,250 mg/d, PO, continuous
 - C: 2,000 mg/m²/d, PO, d1-14 q3weeks
- Clinical assessment (including NSS) every 3 weeks
- · Cerebral and systemic imaging every 6 weeks

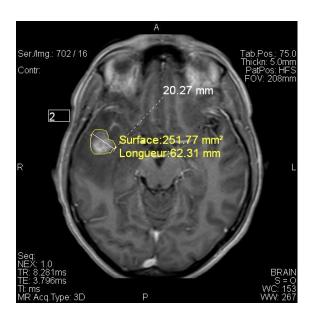
LANDSCAPE PROTOCOL

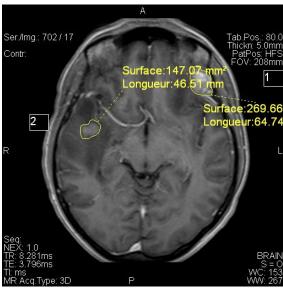
Primary endpoint

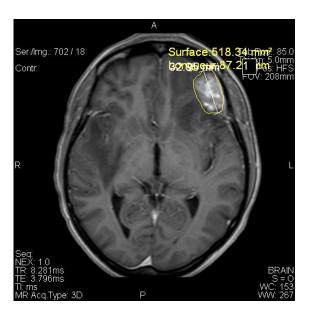
- Centrally assessed CNS objective response (CNS-OR) defined as a ≥50% volumetric reduction of CNS lesions¹
- > in the absence of: increasing steroid use

progressive neurologic symptoms progressive extra-CNS disease

Secondary endpoints


- Time to progression (CNS and extra-CNS)
- Safety
- Time to WBR
- Prognostic and predictive value of circulating tumor cells (CTC) at baseline and day 21 (CellSearch® system)


1. Lin et al. Clin Cancer Res 2009; 15: 1452-59


Efficacy assessment

Centrally and blinded volumetric assessment of CNS lesions

- Whole brain, T1 Gado.; axial view, 5mm thickness
- All target lesions contoured across all slices,
- Tumor volume = Σ (outlined surfaces * slice thickness)

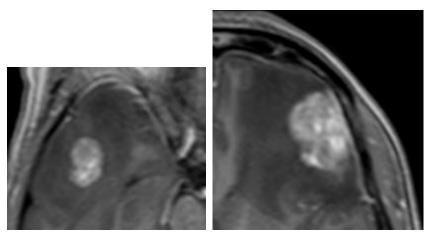
Lin et al. Clin Cancer Res 2009; 15:

Patient Characteristics (n=45)

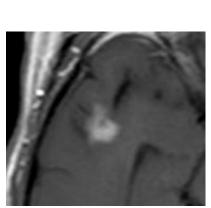
Median age, years (range) < 60 years, n (%)	56 (35-79) 26 (57.8)
ECOG PS, n (%)* 0 1 2	17 (38.6) 25 (56.8) 2 (4.5)
Hormone receptor status, n (%)* ER + and/or PR+ ER- and PR-	22 (50) 22 (50)
Breast cancer GPA index ¹ , n(%)* 1 2 3 4	0 0 22 (50) 22 (50)

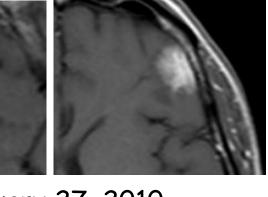
^{*1} missing value

Patient Characteristics (n=45)


Median disease free interval, mo. (range)	34.2 (0-205)
Median time from metastatic relapse to inclusion, mo. (range)	9.7 (0-114)
Disease extension, CNS Median number of CNS lesions (range) 1 CNS lesion, n (%) Patients with NSS at inclusion, n (%)	3 (1- >25) 6 (13.3) 25 (55.6)
Disease extension, extra-CNS, n (%) No extra-CNS Liver Lung 3 or more	7 (15.6) 22 (48.9) 16 (35.6) 14 (31.1)
Previous trastuzumab treatment, n (%) No trastuzumab Adjuvant only Metastatic +/- adjuvant	3 (6.7) 11 (25) 31 (68.9)

Primary Endpoint: CNS volumetric response

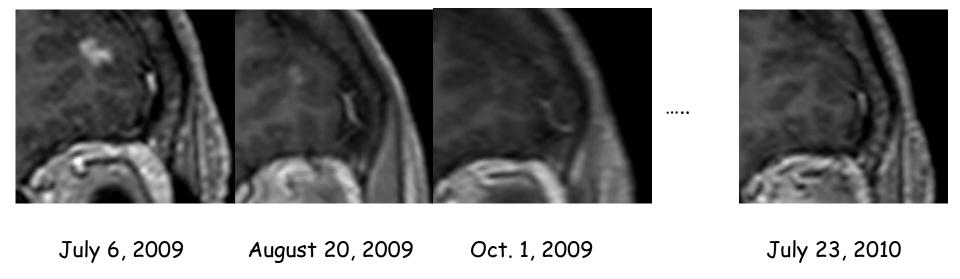

CNS Volumetric change	n = 43 (%)	
≥ 80% Reduction	9	(20.9)
50- <80% Reduction	20	(46.5)
20- <50% Reduction	6	(14)
> 0- <20% Reduction	2	(4.7)
Progression*	6	(14)


NSS improvement: 14/24 = 58.3% (95% CI: 36.6-77.9)

Bone and pulmonary mets: trastuzumab + paclitaxel Progression and multiple brain mets: October 2009

October 23, 2009

January 27, 2010


Volumetric reduction: 70%

CNS 1progression: June 4, 2010 WBR: July 8, 2010

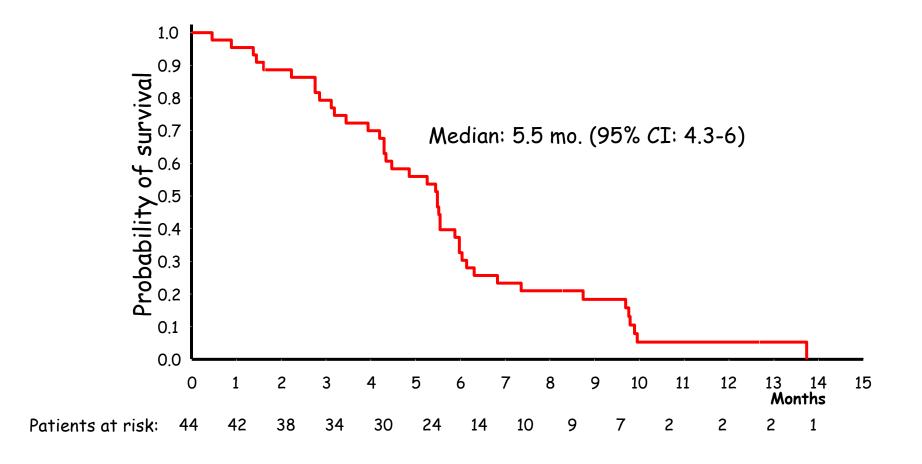
43-year-old patient, left breast cancer pT1pN1: June 2006

Bone, liver, pulmonary mets: March 2009, trastu. + paclitaxel

Symptomatic multiple brain mets (25): June 2009

Volumetric reduction: 98%

Still on treatment after 13 months (1 dose reduction)

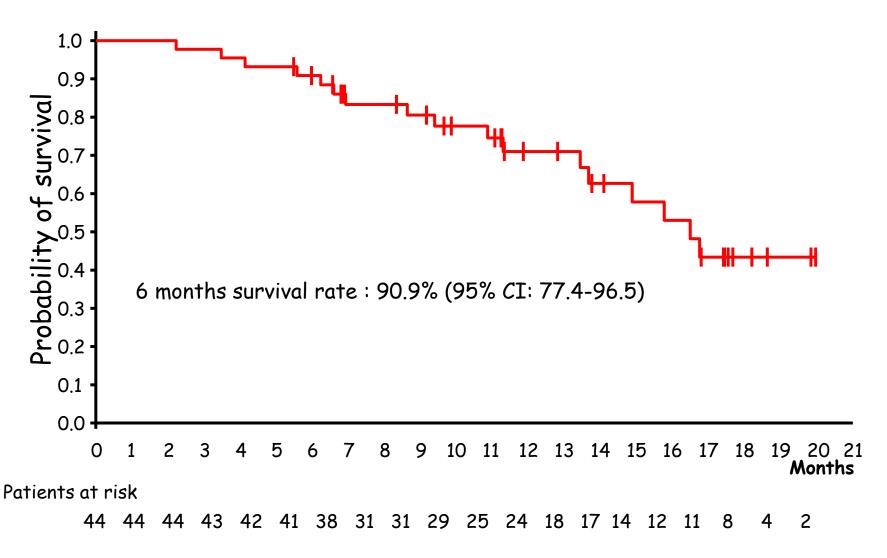

Extra-CNS RECIST response

Extra-CNS-OR: 15/35 = 42.9% (95% CI: 26-61)

Extra-CNS RECIST evaluation	n = 35 (%)	
Complete response	1	(2.9)
Partial response	14	(40)
Stable disease	16	(45.7)
Progression	4	(11.4)

- · 7 patients had no extra-CNS disease
- · 2 patients had no RECIST evaluable lesions

Time to progression



Site of first progression	n = 4	13 (%)
CNS	32	(73.4)
Extra CNS	3	(7)
Concomitant CNS & extra CNS	5	(11.6)

Time to WBR

- Data were available for 43 patients
- At time of analysis, 32 (74.4%) had received WBR
- > Median time to WBR is 7.8 mo. (95% CI: 5.4-9.1)

Overall Survival

Adverse Events

Incidence, n (%)	n = 45		
Grade	Any	3/4	
Patients with at least one SAE	14 (31	.1)	
Most Common Adverse Events			
Diarrhea	38 (84.4)	9 (20)	
Hand foot syndrome	34 (75.5)	9 (20)	
Fatigue	22 (48.9)	6 (13.3)	
Rash	11 (24.4)	2 (4.4)	
Nausea	23 (51.1)	1 (2.2)	
Bilirubin increase	21 (46.6)	1 (2.2)	
Vomiting	16 (35.5)	1 (2.2)	
Stomatitis	13 (28.9)	1 (2.2)	
	Lapatinib	17 (37.8)	
Dose reduction due to AE	Capecitabine	26 (57.8)	
Treatment discontinuation due to AE	3 (6.7)		

No toxic death

CNS volumetric response Selected subgroup analysis

CNS-OR, n (%)	n=43
ALL	29/43 (67.4)
GPA index = 3	14 / 20 (70)
GPA index = 4	14 / 22 (63.6)
1 or 2 CNS lesions	13 / 20 (65)
≥ 3 CNS lesions	16 / 22 (72.7)
Patients with NSS at inclusion Patients without NSS at inclusion	16 / 23 (69.6) 13 / 20 (65)
Previous metastatic trastuzumab	20 / 29 (69)
No previous metastatic trastuzumab	9 / 14 (64.3)

Conclusions

L+C for newly diagnosed BM in HER2+ MBC:

- L+C is highly active for untreated BM
 - CNS volumetric response rate was 67% (95% CI: 51-81)
 - Median TTP was 5.5 months
- This combination warrants further evaluation
 - Phase III trial
 - Multimodal therapy with surgery/SRS
 - Prevention strategy