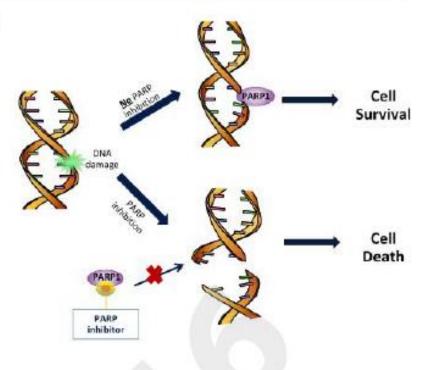
GASCO 2016 San Antonio Breast Cancer Symposium Review

Triple Negative Breast Cancer

Amelia Zelnak, MD, MSc Atlanta Cancer Care Northside Hospital Cancer Institute

Disclosures: consultant for Novartis, Pfizer

EFFICACY AND TOLERABILITY OF VELIPARIB IN COMBINATION WITH CARBOPLATIN AND PACLITAXEL VS PLACEBO PLUS CARBOPLATIN AND PACLITAXEL IN PATIENTS WITH *BRCA1* OR *BRCA2* MUTATIONS AND LOCALLY RECURRENT OR METASTATIC BREAST CANCER: A RANDOMIZED, PHASE 2 STUDY


Hyo Sook Han, Véronique Diéras, Mark Robson, Markéta Palácová, P. Kelly Marcom, Agnes Jager, Igor Bondarenko, Dennis Citrin, Mario Campone, Melinda L. Telli, Susan M. Domchek, Michael Friedlander, Bella Kaufman,

Christine Ratajczak, Caroline Nickner, Patrick Bonnet, Qin Qin, Jane Qian, Vincent L. Giranda, Stacie P. Shepherd, Steven J. Isakoff, Shannon Puhalla

S2-05 Efficacy and tolerability of veliparib in combination with carboplatin and paclitaxel vs. placebo in patients with BRCA1 or BRCA2 mutations and metastatic breast cancer: a randomized phase 2 study

Background

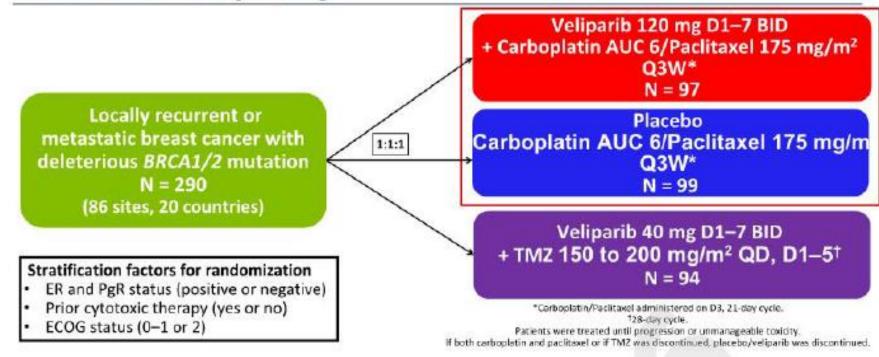
- Approximately half of women who inherit a BRCA1/2 mutation will develop breast cancer before the age of 70 years¹
- Existing homologous recombination DNA damage repair defects in tumors with *BRCA1/2* mutations make them particularly sensitive to poly(ADPribose) polymerase (PARP) inhibitors, which interfere with DNA damage repair²⁻³
- Emerging clinical data indicate that patients with BRCA mutations may also be particularly sensitive to platinumcontaining therapies⁴⁻⁶

1. Chen 5, et al. J Clin Oncol. 2007;25(11):1329-1333; 2. Javle M, et al. & J Cancer. 2011:105(8):1114-1122; 3. Curtin NJ, et al. Chn Concer Res. 2004;10(3):881-889; 4. Byrski T, et al. & reast Concer Res. 2012;14(4):8110; 5. Tutt A, et al. Concer Res. 2015;75(9 suppl): abstract \$3-01; 6. Isakoff SJ, et al. J Clin Oncol. 2015;33(17):1902-1909.

PARP Inhibitors in Development

DADD in hikitar	Dharmanautical	Investigational phase
PARP inhibitor	Pharmaceutical company	Investigational phase
Veliparib (ABT-888)	AbbVie	 Phase III: – Neoadjuvant setting in combination with carboplatin/paclitaxel in triple-negative BRCA1/2-mutated metastatic breast cancer Phase II/III: – Combination therapy in germline BRCA1/2-mutated metastatic breast cancer
Olaparib (AZD2281)	AstraZeneca	Phase III: – Adjuvant treatment in germline <i>BRCA1/2</i> -mutated high-risk, <i>HER2</i> - primary breast cancer – Advanced setting monotherapy in germline <i>BRCA1/2</i> -mutated breast cancer
Niraparib (formerly MK-4827)	Tesaro	Phase III: – Advanced setting in germline <i>HER-, BRCA1/2</i> -mutated breast cancer
Talazoparib (BMN 673)	Medivation	 Phase III: Advanced setting monotherapy in germline <i>BRCA1/2</i>-mutated breast cancer Phase II: Advanced setting <i>BRCA1/2</i> wild-type, triple-negative breast cancer and homologous recombination deficiency Advanced setting <i>BRCA1/2</i>-mutated breast cancer Advanced setting in germline <i>BRCA</i>-intact breast cancer Neoadjuvant setting in <i>BRCA1/2</i>-mutated breast cancer
Rucaparib (formerly AG 14699)	Clovis Oncology	Phase II: – Advanced setting in patients with known germline <i>BRCA1/2</i> -mutated solid tumors – Adjuvant setting in triple-negative breast cancer or germline <i>BRCA1/2</i> -mutated breast cancer
CEP-9722	Teva Pharmaceuticals Industries	Phase II: – Advanced setting in solid tumors

PARP inhibitor Breast Trials in Georgia


Drug	Study	Georgia Location
Veliparib	A Phase 3 Randomized, Placebo-controlled Trial of Carboplatin and Paclitaxel With or Without Veliparib (ABT-888) in HER2-negative Metastatic or Locally Advanced Unresectable BRCA-associated Breast Cancer	Winship Cancer Institute at Emory University
	Cisplatin With or Without Veliparib in Treating Patients With Stage IV Triple-Negative and/or BRCA Mutation- Associated Breast Cancer	Pearlman Cancer Center in Valdosta
Olaparib	NSABP B55 Olaparib as Adjuvant Treatment in Patients With Germline BRCA Mutated High Risk HER2 Negative Primary Breast Cancer (OlympiA)	John B Amos in Columbus, St. Joseph's/Candler in Savannah, Northside Hospital Cancer Institute, Dekalb Medical, Winship Cancer Institute
	Assessment of the Efficacy and Safety of Olaparib Monotherapy Versus Physicians Choice Chemotherapy in the Treatment of Metastatic Breast Cancer Patients With Germline BRCA1/2 Mutations. (OlympiAD)	NW Georgia Oncology, Marietta (closed to accrual)
Talazoparib	A Study Evaluating Talazoparib (BMN 673), a PARP Inhibitor, in Advanced and/or Metastatic Breast Cancer Patients With BRCA Mutation vs. TPC (EMBRACA)	University Cancer and Blood Center in Athens, Navicent Health in Macon

S2-05 BROCADE Veliparib

Background

- Veliparib is a potent orally bioavailable, selective inhibitor of PARP-1 and PARP-2¹
- Antitumor activity of veliparib monotherapy in patients with BRCA-positive breast cancer has been observed in phase 1/2 trials^{2,3}
- Phase 1 studies suggest promising antitumor activity and acceptable toxicity of veliparib + carboplatin/paclitaxel (C/P) in breast cancer^{4,5}
- Veliparib/carboplatin increased pathologic complete response (CR) rate when added to standard neoadjuvant therapy (51% vs 26%) in the I-SPY 2 phase 2 study of patients with triple-negative breast cancer (TNBC)⁶
- Here, safety and efficacy results for the first randomized phase 2 trial of placebo or veliparib with C/P in patients with locally recurrent/metastatic breast cancer and a BRCA1/2 mutation are reported

BROCADE: Study Design

Veliparib + TMZ results will be presented separately; December 9, 2016, 7.30 am – 9.30 am SABCS program number: P4-22-02

- ≤ 2 prior lines of chemotherapy
- No prior platinum or PARP inhibitor
- No CNS metastases

- Primary Endpoint :PFS
- Secondary Endpoints: OS, CBR (week 18 progression-free rate), ORR

Demographics and Baseline Characteristics

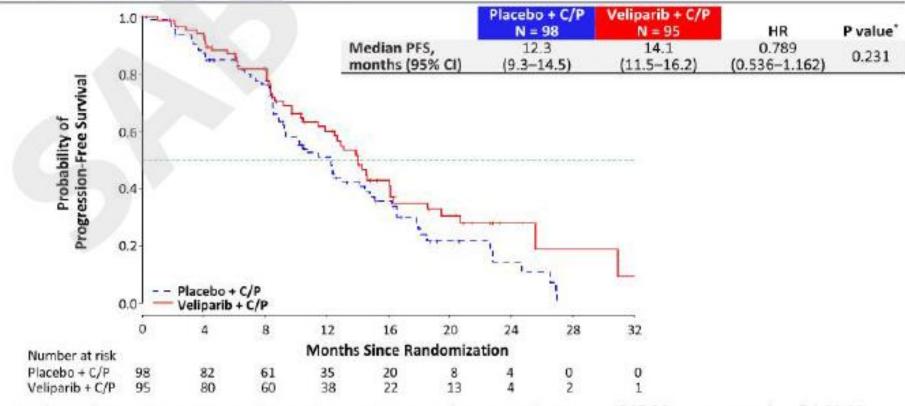
Characteristic, n (%)	Placebo + C/P N = 99	Veliparib + C/P N = 97	Characteristic, n (%)	Placebo + C/P N = 99	Veliparib + C/P N = 97
Median age, years (range)	46 (24-66)	44 (25-65)	Number of prior regimens of cytotoxic therapy (any		any
ER/PgR status			setting)		
ER negative and PgR negative	43 (43.4)	40 (41.2)	0	23 (23.2)	19 (19.6)
ER positive and/or PgR positive	56 (56.6)	57 (58.8)	1	42 (42.4)	47 (48.5)
HER2 overall status*			2	25 (25.3)	24 (24.7)
Negative	92 (92.9)	94 (96.9)	>2	9 (9.1)	7 (7.2)
Positive	7 (7.1)	3 (3.1)	Measurable disease at baseline [†]		
TNBC	42 (42.4)	40 (41.2)	Yes	81 (83.5)	73 (77.7)
Non-TNBC	57 (57.6)	57 (58.8)	No	16 (16.5)	21 (22.3)
BRCA1 mutation positive	53 (53.5)	51 (52.6)	Number of metastatic sites		
BRCA2 mutation positive	46 (46.5)	44 (45.4)	No metastases	5 (5.1)	4 (4.1)
ECOG status			1	38 (38.4)	39 (40.2)
0-1	93 (93.9)	92 (94.8)	2	28 (28.3)	30 (30.9)
2	6 (6.1)	5 (5.2)	3	18 (18.2)	13 (13.4)
6	0 (0.1)	5 (5.2)	≥4	10 (10.1)	11 (11.3)

*Positive in either primary site or metastasis...

"Status missing for 2 patients in the placebo + C/P and 3 patients in the veliparib + C/P arm.

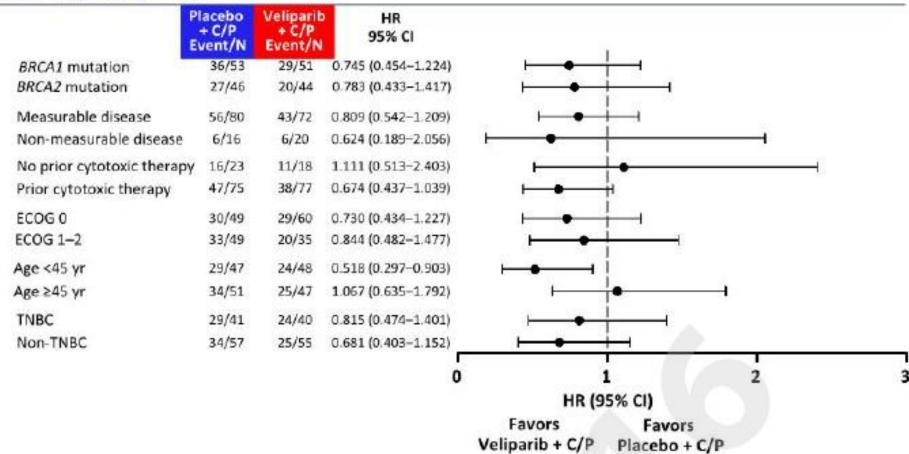
HER2, human epidermal growth factor receptor 2.

Treatment-Emergent Grade 3/4 Adverse Events

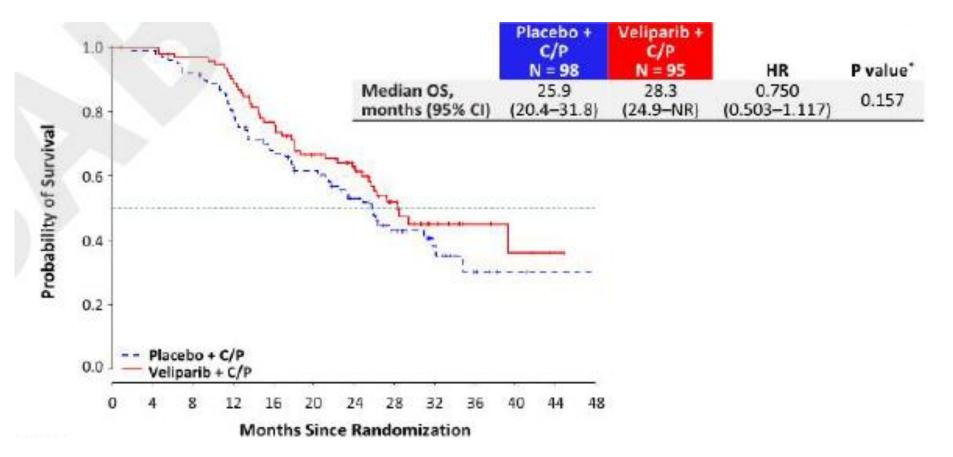

	Placebo + C/P N = 96	Veliparib + C/P N = 93
Grade 3/4 AE, n (%)	80 (83.3)	73 (78.5)
Common hematologic grade 3/4 AEs, n (%)		
Anemia	17 (17.7)	16 (17.2)
Febrile neutropenia	3 (3.1)	8 (8.6)
Leukopenia	11 (11.5)	15 (16.1)
Neutropenia	53 (55.2)	52 (55.9)
Thrombocytopenia	25 (26.0)	29 (31.2)
Common non-hematologic grade 3/4 AEs, n (%)		
Diarrhea	7 (7.3)	4 (4.3)
Drug hypersensitivity	0	5 (5.4)*
Fatigue	8 (8.3)	5 (5.4)
Peripheral neuropathy [†]	5 (5.2)	7 (7.5)

Treatment-Emergent Adverse Events

Leading to Study Drug Interruption, Reduction, or Discontinuation

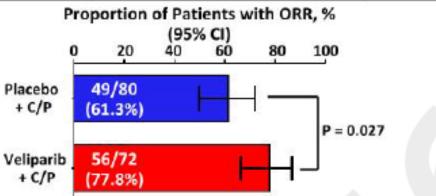

Any adverse event leading to:	Placebo + C/P N = 96	Veliparib + C/P N = 93	
Veliparib/Placebo			
Interruption, n (%)	69 (71.9)	70 (75.3)	
Reduction, n (%)	10 (10.4)	5 (5.4)	
Discontinuation, n (%)	20 (20.8)	26 (28.0)	
Carboplatin			
Interruption, n (%)	71 (74.0)	70 (75.3)	
Reduction, n (%)	65 (67.7)	56 (60.2)	
Discontinuation, n (%)	38 (39.6)	42 (45.2)	
Paclitaxel			
Interruption, n (%)	69 (71.9)	72 (77.4)	
Reduction, n (%)	51 (53.1)	35 (37.6)*	
Discontinuation, n (%)	33 (34.4)	31 (33.3)	

Progression-Free Survival



Median (95% CI) PFS, Veliparib + TMZ: 7.4 (5.9-8.5) months; HR = 1.858 (1.278-2.702), P = 0.001. (SABCS program number: P4-22-02)

PFS by Subgroups



BROCADE: Overall Survival

Tumor Response

	Placebo + C/P N = 98	Veliparib + C/P N = 95
ORR (CR + PR),	49/80 (61.3%)	56/72 (77.8%)*
n/N, % (95% CI)	(49.7-71.9)	(66.4-86.7)
CR, n/N, (%)	3/80 (3.8%)	4/72 (5.6%)
PR, n/N, (%)	46/80 (57.5%)	52/72 (72.2%)
CBR	87.0%	90.7%
(week 18 progression-free rate), % (95% CI)	(78.3-92.4)	(82.2-95.2)
DOR,	11.1	11.7
median months, (95% CI)	(9.5-15.7)	(8.5-14.1)

Conclusions

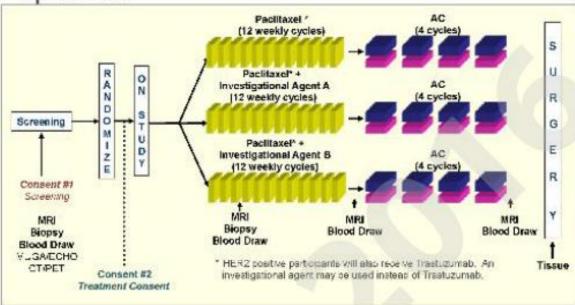
- The addition of veliparib to carboplatin/paclitaxel resulted in trends toward improved PFS and OS, and a significant increase in ORR
 - Final OS analysis will occur when the prespecified number of events is reached
- The safety profile of veliparib + carboplatin/paclitaxel was comparable to that of carboplatin/paclitaxel alone
- Addition of veliparib did not increase the frequency of interruption, dose reduction, or discontinuation of veliparib/placebo, carboplatin, or paclitaxel due to adverse events
- Further evaluation of the efficacy and safety of veliparib with weekly paclitaxel and carboplatin in patients with BRCA-mutated advanced breast cancer is ongoing in the phase 3 randomized trial BROCADE3 (NCT02163694)

DNA repair deficiency biomarkers and MammaPrint High1/(ultra)High2 risk as predictors of veliparib/carboplatin response: results from the neoadjuvant I-SPY 2 TRIAL for high risk breast cancer

Denise Wolf* & Christina Yau*

Ashish Sanil, Annuska Glas, Chip Petricoin, Julia Wulkuhle, Lamorna Brown-Swigart, Gillian Hirst, I-SPY 2 TRIAL Investigators, Meredith Buxton, Angela DeMichele, Nola Hylton, Fraser Symmans, Doug Yee, Melissa Paoloni, Don Berry, Hope Rugo, Olufunmilayo Olopade,

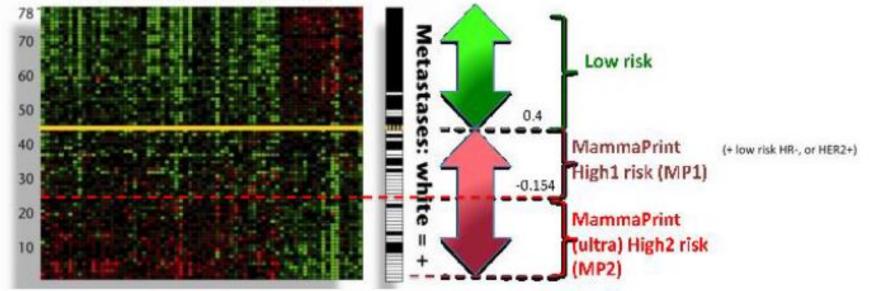
Laura Esserman & Laura van 't Veer


*equal contribution

This presentation is the intellectual property of the author/presenter. Contact Idenise wolf@ucsf.edu) for permission to reprint and/or distribute

S2-06 DNA repair deficiency biomarker and MammaPrint high1/(ultra)high2 risk as predictors of veliparib/carboplatin response: Results from the neoadjuvant I-SPY2 trial for high

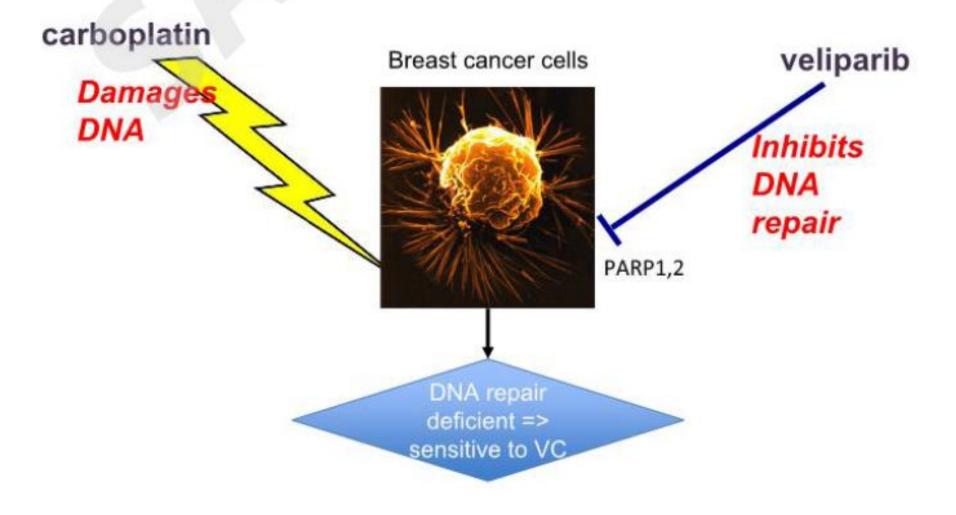
The I-SPY2 TRIAL Standing Platform


- · Phase II, adaptively-randomized neoadjuvant trial
- Shared control arm
 - Standard neoadjuvant chemotherapy
- Simultaneous investigational arms
 - Up to four

The I-SPY2 TRIAL Standing Platform

- Primary endpoint: pathologic complete response (pCR)
 - Defined as no residual invasive cancer in the breast or lymph nodes (ypT0/is and ypN0)
- Match therapies with most responsive breast cancer subtypes
 - Defined by HR, HER2, and 70-gene signature (Mammaprint) High1/(ultra)High2 risk (MP1/2) status

70-gene prognostic signature

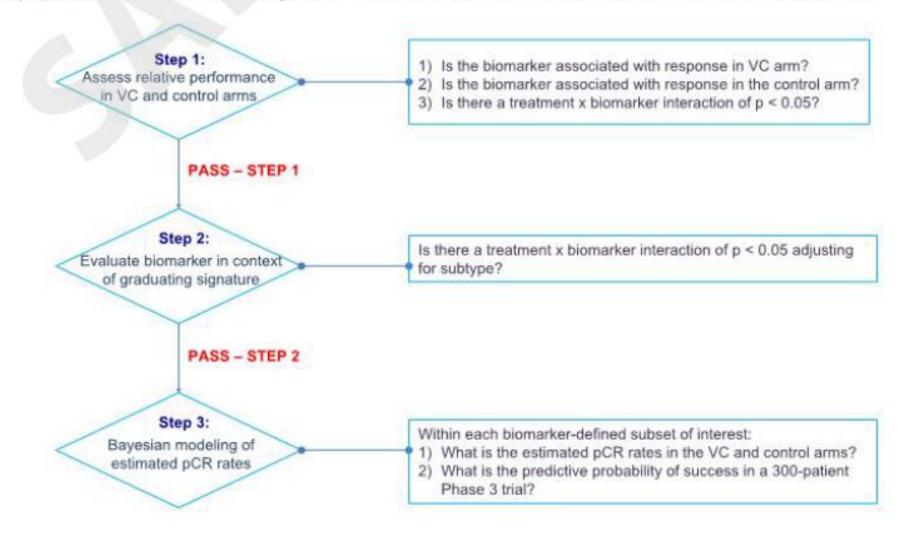


The I-SPY2 TRIAL Standing Platform

- Primary endpoint: pathologic complete response (pCR)
 - Defined as no residual invasive cancer in the breast or lymph nodes (ypT0/is and ypN0)
- Match therapies with most responsive breast cancer subtypes
 - Defined by HR, HER2, and 70-gene signature (Mammaprint) High1/(ultra)High2 risk (MP1/2) status
- Agents/combinations "graduate" for efficacy = reaching >85% predictive probability of success in a subsequent phase III trial in the most responsive patient subset
- Biomarker component: evaluate biomarkers associated with mechanism of action of each investigational treatment, along with the pre-defined subsets

veliparib/carboplatin (VC) combination therapy graduated in the triple negative (TN) subset

VC was open to Her2- patients

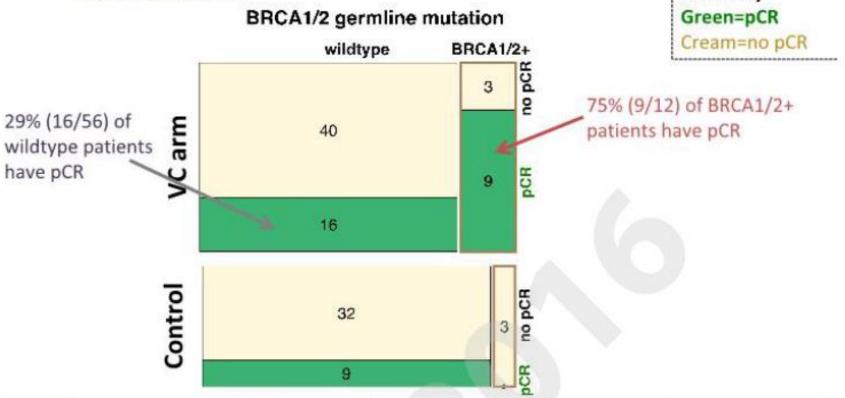


Biomarker proposals for specific predictors of veliparib/carboplatin response

- BRCA1/2 germline mutation (Myriad Genetics)
- PARP1 protein and cleaved protein levels (RPPA)
- 3 gene expression signatures relating to DNA damage repair deficiency
 - PARPi-7
 - 7 gene DNA-repair deficiency signature: BRCA1, CHEK2, MAPKAPK2, MRE11A, NBN, TDG, XPA. Predicts olaparib-sensitivity in cell lines (PMID:22875744)
 - BRCAness
 - 77-gene BRCA1/2 deficiency signature. Distinguishes BRCA1 from wildtype (based on PMID:22032731)
 - CIN70
 - 70-gene chromosomal instability (PMID:16921376)
- MP1/2 class

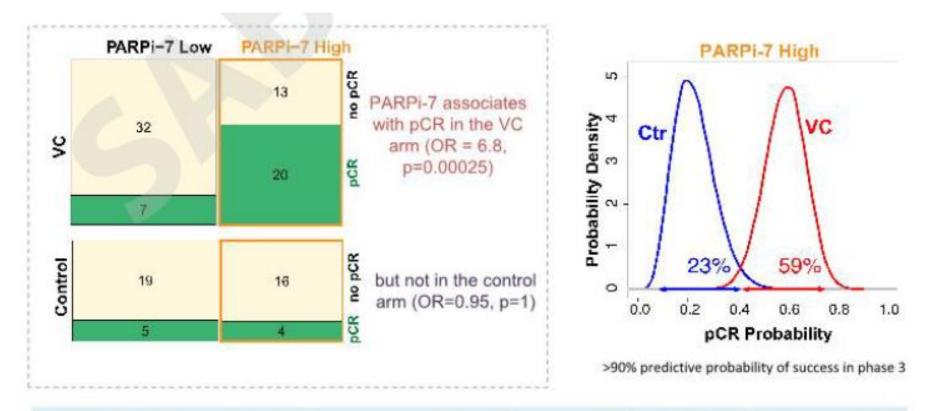
Our Pre-specified Biomarker Evaluation Methodology is a 3-Step Process

116 patients available for analysis in V/C & concurrent control arms; 72 VC + 44 controls.



BRCA 1/2 Germline Mutation

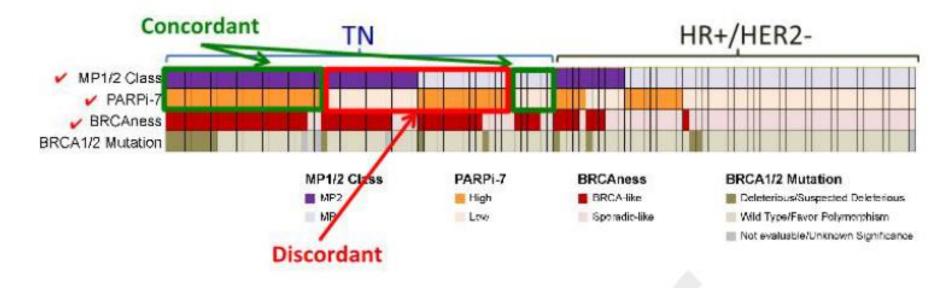
 13% (15/114) of patients were found to carry a deleterious or suspected deleterious BRCA1/2 mutation.


Color Key

• Most (73%: 11/15) TN.

BRCA1/2 germ line mutation status associates with response in the VC arm (OR=7.25; p=0.006) but its low prevalence in the control arm (n=3) precluded further evaluation.

PARPi-7 Signature Example


There is a significant biomarker x treatment interaction (p=0.03), which remains upon adjusting for HR status (p= 0.025).

PARPi-7 is a specific predictor of VC response

Specific Predictors of VC Response

- BRCA1/2 germline mutation not evaluable
- PARP1 protein and cleaved protein levels (RPPA) NO
- 3 gene expression signatures relating to DNA damage repair deficiency
 - PARPi-7 YES
 - 7 gene DNA-repair deficiency signature: BRCA1, CHEK2, MAPKAPK2, MRE11A, NBN, TDG, XPA. Distinguishes between olaparib-sensitive and resistant cell lines (PMID:22875744)
 - BRCAness YES
 - 77-gene BRCA1/2 deficiency signature. Distinguishes between BRCA1 and wildtype within TN (based on PMID:22032731)
 - CIN70 NO
 - 70-gene chromosomal instability (PMID:16921376)
- MP1/2 class YES

Concordance between PARP-i7, BRCAness, MP1/2

Concordance between pairs of VC sensitivity biomarkers in TN is just 50-67% (moderate).

(Not identifying exactly the same patients)

Voting Scheme to Combine Biomarkers

Biomarker 1	Biomarker 2	Combined
Resistant	Resistant	Resistant
Resistant	Sensitive	Resistant
Sensitive	Resistant	Resistant
Sensitive	Sensitive	SENSITIVE

Patients positive for both sensitivity markers called 'sensitive' (need 2 YES votes!)

Individual biomarkers **Combined biomarkers** TN/MP2 ut . Triple Negative Probability Dunsity Ctra VC negative for one or positive for more markers both markers 25% 64% TN/MP2/PARPi7-high TN/(MP1 or PARPi7-low) 12 04 06 08 1.0 pCR Probability 0.0 Unselected TN Dunsil TN/PARPi7-High Den Ctr 11 Probability Density Donsity Probability C ubability Vs. Ctr Ctr VC VC Probao lily | ñ 23% 79% 0 0.4 d.6 da 0.3 d.2 0.4 0.6 d.a 1.0 00 2.2 10 25% 69% pGR Probability pCR Probability ò. c 12 04 06 08 1.0 pCR Probability Provided Resistant 0.0 Predicted SENSITIVE 0.0 \$2 0.4 0.6 0.8 1.0 pCR Probability TN/BRCA1-lke TN tumors av Donsity + Ctr VC MP2 and PARPIT-high Predicted SENSITIVE Ficture 1 40% 60% 20% 56 MP1 or PARPi7-low 64 @ Resistant 12 04 06 08 pCR Probability

Combining Biomarkers Improves Predictive Performance

Nearly all of the specific sensitivity to veliparib/carboplatin is in the 40% of TN patients positive for **BOTH** sensitivity markers.

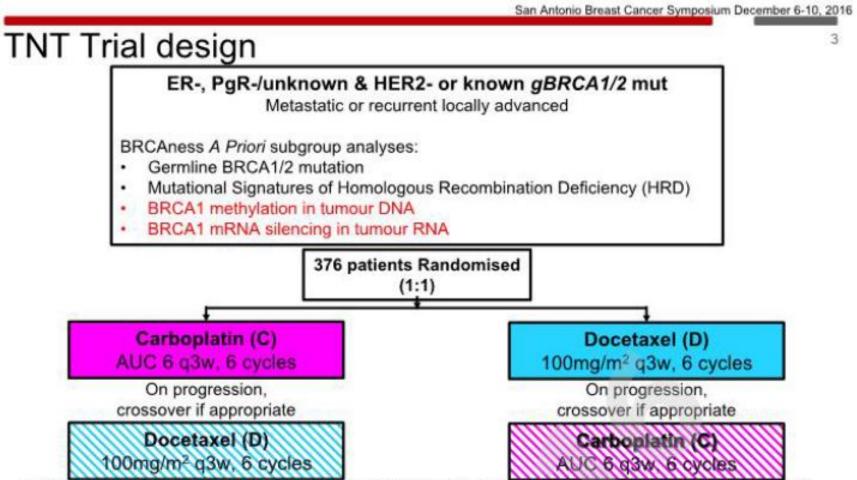
(Bayesian models using all data - N=116)

Individual biomarkers **Combined biomarkers** HR+HER2-/MP2 HR+HER2-Protactility Density VC HR+HER2-/MP2/PARPi7-high HR+HER2-/(MP1 or PARPi7-low) 9% of HR+/HER2-91% of HR+/HER2-15 é: Denaty 25 pCR Probability Densi 0.3 25 Vs. Probability Unselected HR+HER2-HR+HER2-/PARPi7-High robability Density Probability Density 0 U 0.2 04 U.E C2 C4 25 29 10 pCR Probability pC3 Probability è ŝ Predicted SENSITIVE Predicted Resistant (by voting scheme) (by soling scheme) D2 01 05 05 10 pCR Propability 0.0 os ou de de to 6.0 pCR Proceedity HR+HER2- tumors TN tumors HR+HER2-/BRCA1-like MP2 and PARP17-high MP2 and PARP#-high 25 Predicted SENSITIVE Probability Density Predicted SENSITIVE DAY 40% MP1 or PARPI7-low 60% Predicted Resistant MP1 or PARP 7-low 91% Resistant pCR Propability

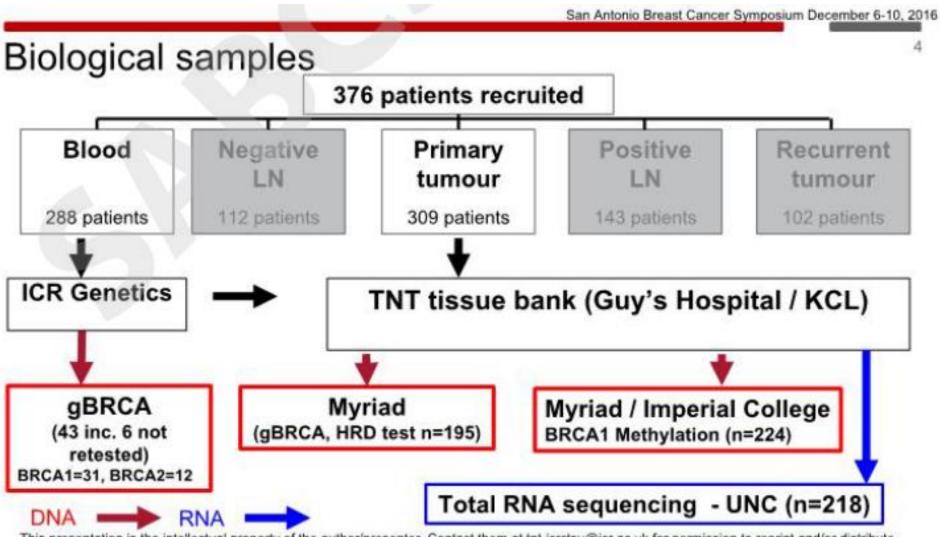
Combining Biomarkers Improves Predictive Performance

Nearly all of the specific sensitivity to veliparib/carboplatin is in the 9% of HR+HER2- patients positive for **BOTH** sensitivity markers.

(Bayesian models using all data - N=116)


San Antonio Breast Cancer Symposium December 6-10, 2016

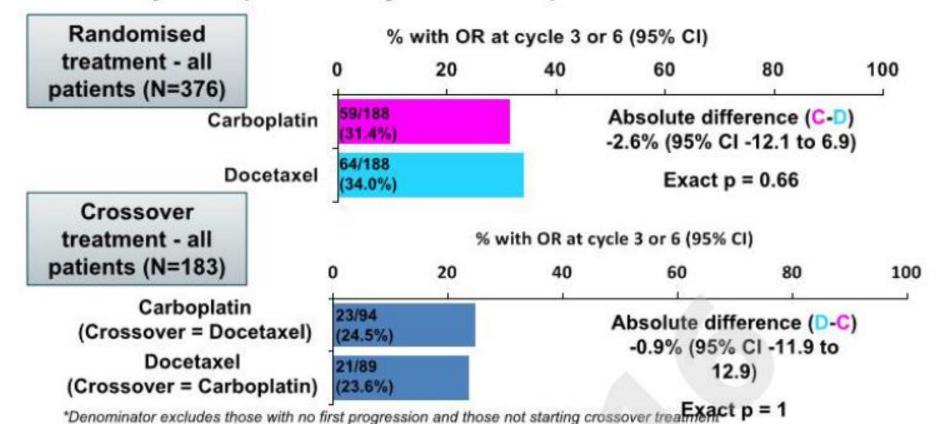
BRCA1 methylation status, silencing and treatment effect in the TNT trial: A randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer


Andrew Tutt, Maggie Chon U Cheang, Lucy Kilburn, Holly Tovey, Cheryl Gillett, Sarah Pinder, Jerry Lanchbury, Jacinta Abraham, Sophie Barrett, Peter Barrett-Lee, Stephen Chan, Patrycja Gazinska, Anita Grigoriadis, Sarah Kernaghan, Katherine Hoadley, Alexander Gutin, Catherine Harper-Wynne, Matthew Hatton, Julie Owen, Peter Parker, Rebecca Roylance, Adam Shaw, Ian Smith, Rose Thompson, Kirsten Timms, Andrew Wardley, Gregory Wilson, Mark Harries, Paul Ellis, Alan Ashworth, James Flanagan, Charles Perou, Judith Bliss, Nazneen Rahman, Robert Brown on behalf of the TNT Trial Management Group and Investigators

S6-01 BRCA1 methylation status, silencing and treatment effect in the TNT trial

This presentation is the intellectual property of the author/presenter. Contact them at tnt-icrctsu@icr.ac.uk for permission to reprint and/or distribute

TNT trial

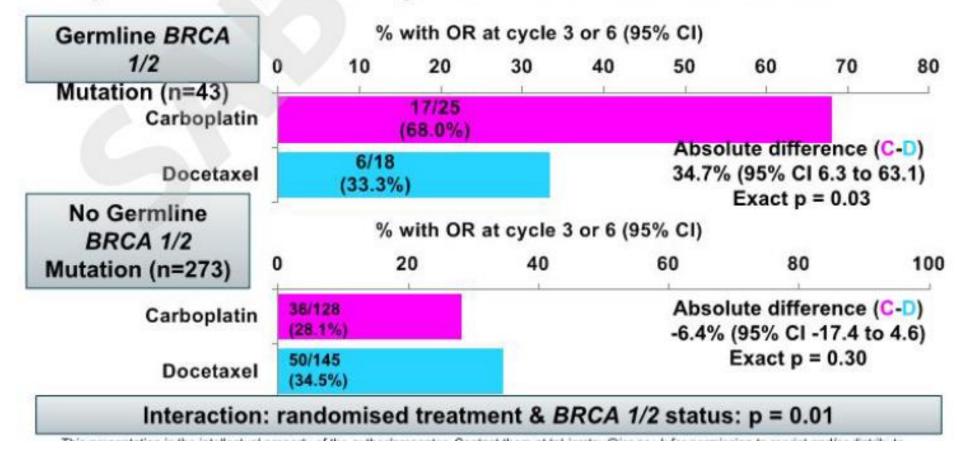


This presentation is the intellectual property of the author/presenter. Contact them at tnt-icrctsu@icr.ac.uk for permission to reprint and/or distribute

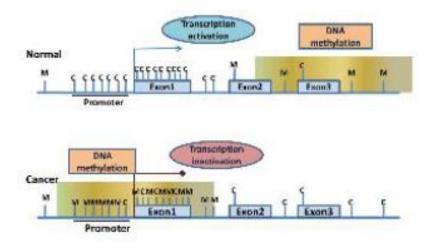
TNT Trial

San Antonio Breast Cancer Symposium December 6-10, 2016

Primary Endpoint: Objective response



TNT Trial


San Antonio Breast Cancer Symposium December 6-10, 2016

6

Objective response – gBRCA 1/2 mutation status

Epigenetic BRCAness: CpG methylation of regulatory regions of BRCA gene

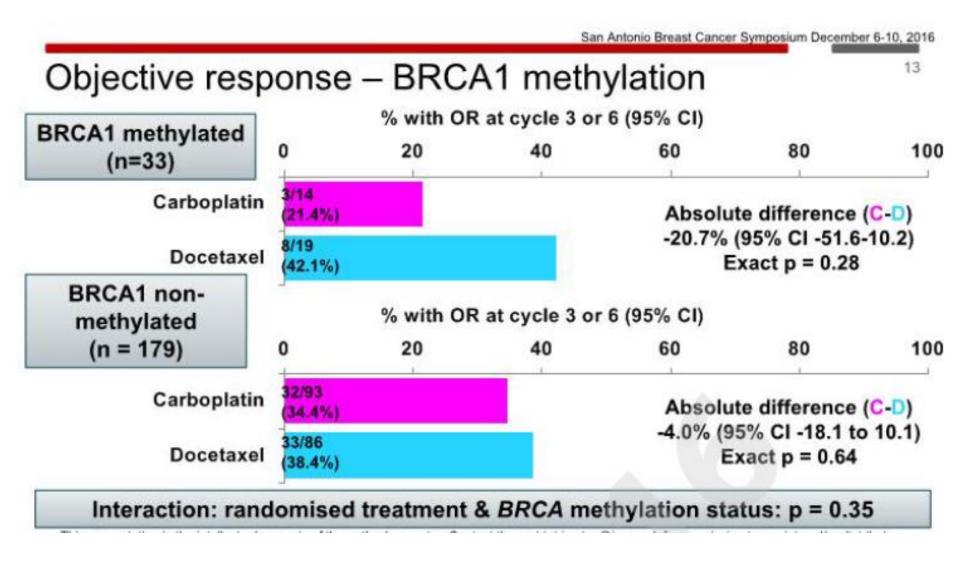
In cancer aberrant methylation of cytosines frequently occurs in the context of CpG dinucleotides in the regulatory regions of genes

This is associated with transcriptional epigenetic silencing

The regulatory region of BRCA1 known to be subject to such epigenetic silencing

Xu et al Annals of Oncology 24: 1498-1505, 2013

The regulatory region of *BRCA1* has multiple CpGs Methylation of these is found to occur in 10-40% of TNBCs (Xu et al Annals of Oncology 24: 1498–1505, 2013) CpG Methylation associated with silencing of *BRCA1* mRNA (Data from TCGA, 2016)

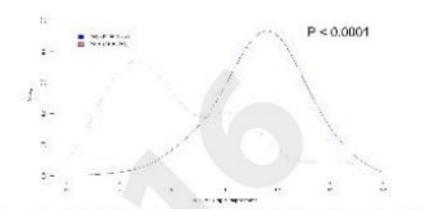

TNT Trial

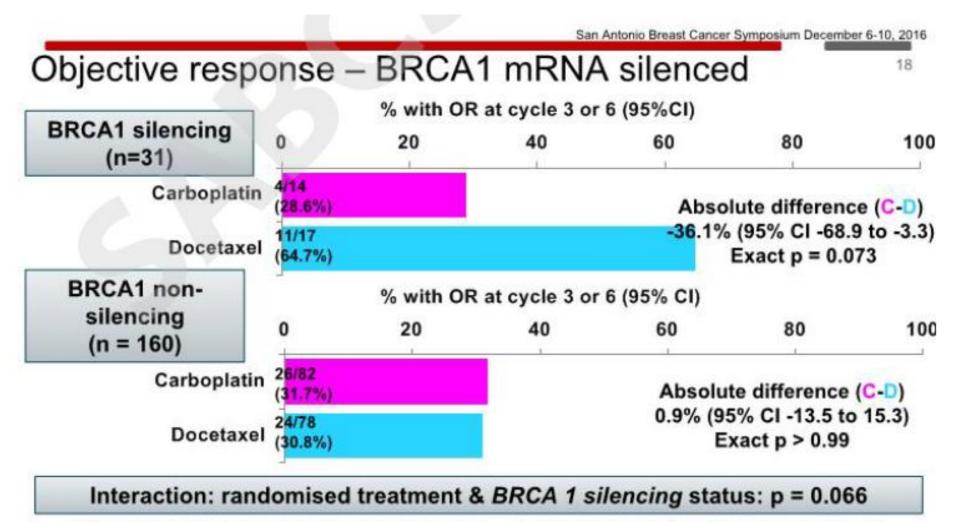
San Antonio Breast Cancer Symposium December 6-10, 2016

BRCA1 methylation status

- 224 primary tumours tested
- Results met QC for 212 patients
 - 33 methylated (18%)
 - 179 non methylated
- 2 cases had both gBRCA1mut and methylation

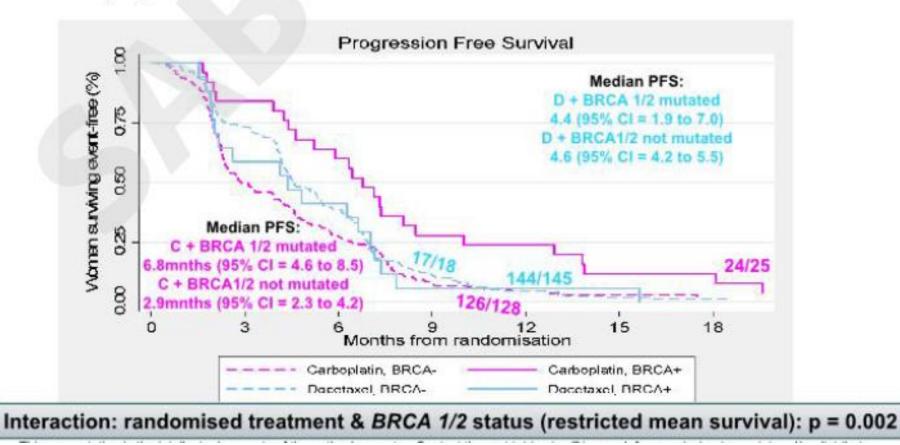
	gBRCA mutated	gBRCA Wildtype	gBRCA Unknown	Total
BRCA Methylated	2	27	4	33
Non BRCA Methylated	20	137	22	179
BRCA Methylation unknown	21	109	34	164
Total	43	273	60	376


San Antonio Breast Cancer Symposium December 6-10, 2016


17

BRCA1 mRNA testing

- 218 primary tumours tested 24 samples failed RNAseq QC 3 duplicates
- Results available for 191 patients
 - 31 silenced (16%)
 - 160 non-silenced
- 184 patients had both mRNA and methylation status available
- 19/29 (66%) methylated samples were silenced


	Methylated	Non- Methylated	Total
Silenced	19	12	31
Non- Silenced	10	143	153
Total	29	155	184

San Antonio Breast Cancer Symposium December 6-10, 2016

PFS by germline BRCA1/2 mutation status

TNT Trial Conclusions

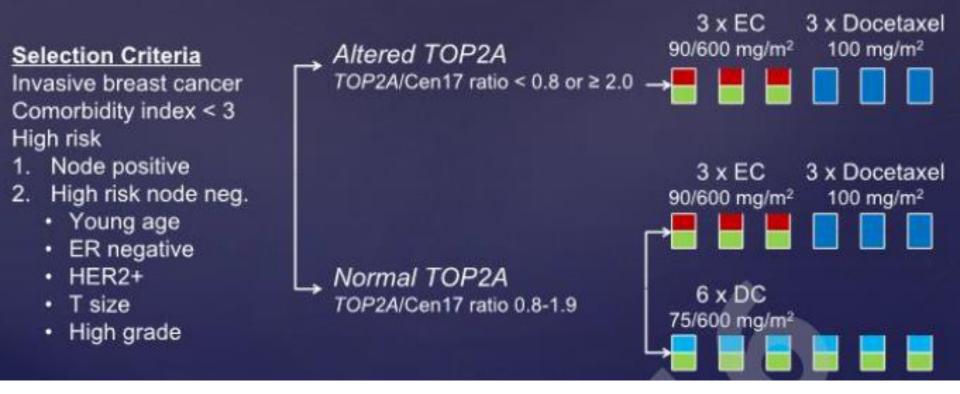
- BRCA1/2 mutations associated with response to carboplatin in metastatic setting

 Consider early testing of metastatic patients
- Epigenetic silencing of BRCA in primary tumor was not associated with response to carboplatin in metastatic setting
 - Unknown if methylation status of primary tumor corresponds to metastatic disease

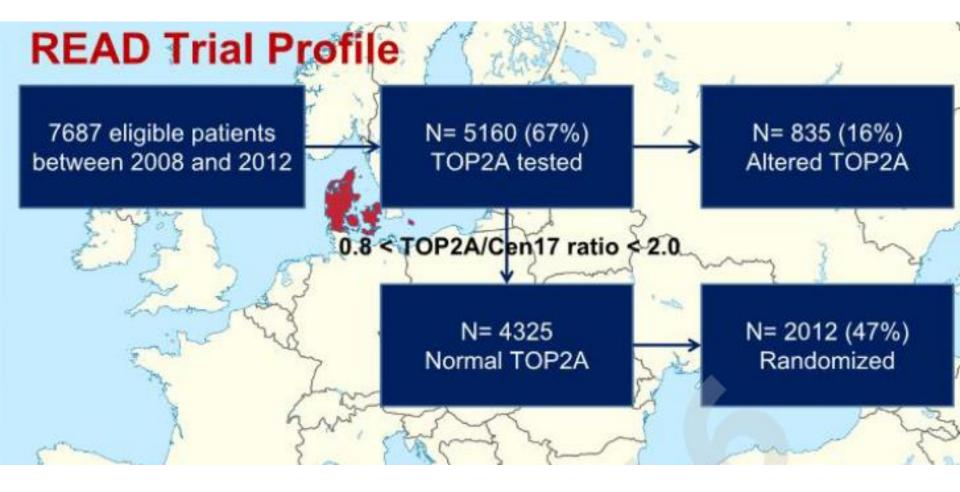
Can we predict response to Platinum and PARP inhibitors?

- Germline BRCA1/2 status not evaluable in ISPY2 but associated with response to carbo in metastatic setting
 - In GeparSixto trial (Doxil/Taxol ± carbo) higher pCR with carboplatin was independent of BRCA status
- Gene expression signatures in ISPY2 not currently available in clinic but promising
- Epigenetic silencing in primary tumors in TNT not associated with response

San Antonio Breast Cancer Symposium - December 6-10, 2016

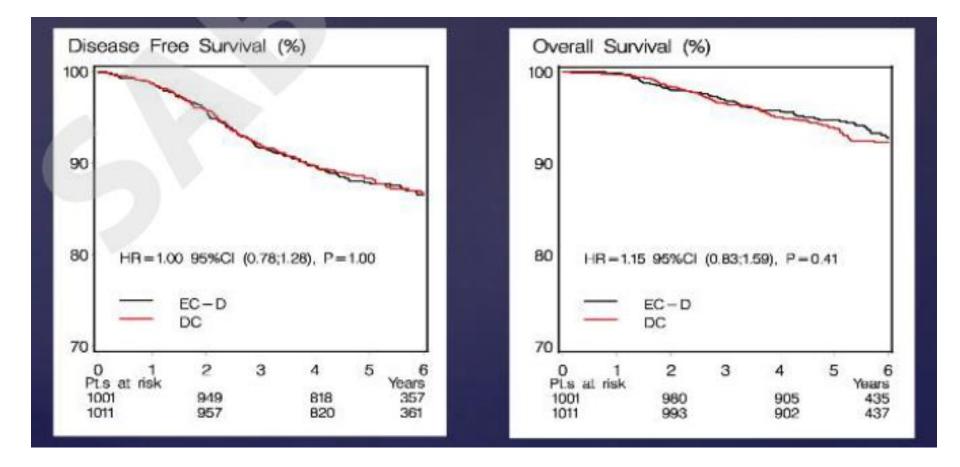

DBCG 07-READ

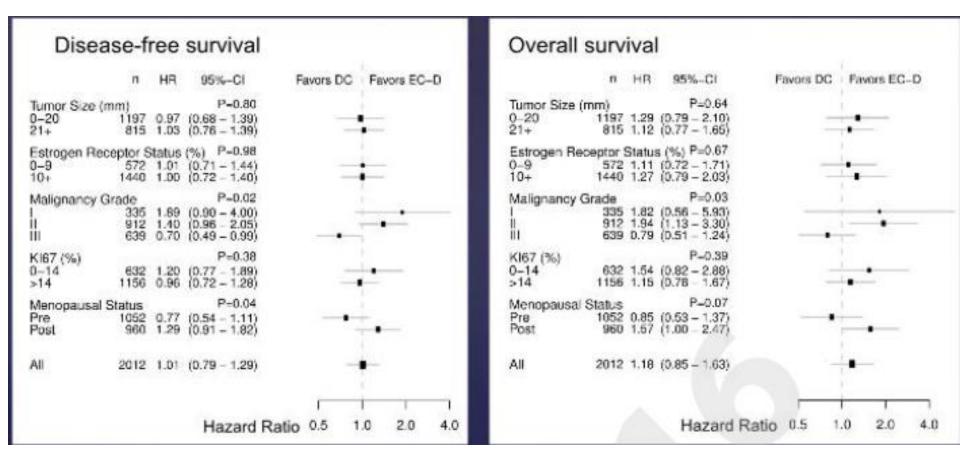
A randomized phase III trial comparing six cycles of docetaxel and cyclophosphamide (DC) to three cycles of epirubicin and cyclophosphamide followed by three cycles of docetaxel (EC-D) in patients with early breast cancer


Bent Ejlertsen, Malgorzata K. Tuxen, Erik H. Jakobsen, Maj-Britt Jensen, Ann S. Knoop, Inger Højris, Marianne Ewertz, Eva Balslev, Peter Michael Vestlev, Julia Kenholm, Dorte L. Nielsen, Troels Bechmann, Michael Andersson, Søren Cold, Hanne M. Nielsen, Else Maae, Dorte Carlsen, Henning Mouridsen for the Danish Breast Cancer Cooperative Group (DBCG)

This presentation is the intellectual property of the author/presenter. Contact@dbco.dkfor permission to reprint and/or distribute.

DBCG 07–READ Trial Design


- Anthracycline-based chemotherapy associated with 3% absolute benefit in survival at 10 years compared to CMF (EBCTCG Lancet 2012)
- Could overall benefit be due to small number of patients (HER2+, TOP2 alteration, CEP17 duplication) having larger benefit


DBCG 07–READ Patient Characteristics

n(%)	×/	EC-D (I	N=1001)	DC (N=1	011)
Age at diagnosis	< 45 45 - 49 50 -54 55-59 60-74	205 199 230 265 102	(20) (20) (23) (26) (10)	204 277 237	(20) (20) (27) (23) (9)
Menopausal status	Premenopausal Postmenopausal	508 493	(51) (49)		(64) (46)
Co-morbidity	Absent (0) Present (1-2)	900 101	(90) (10)		(92) (8)
Tumor size	0 - 10 11 - 20 >20	131 487 383	(49)	127 452 432	(13) (45) (43)
Node negative		448	(45)	467	(46)
Malignancy grade (only ductal/lobular)	Grade 1 Grade 2 Grade 3 Other types	159 453 328 56	(45) (33)	176 459 311 53	(17) (45) (31) (5)
ER positive (≥10%)		702	(70)	738	(73)
HER2 positive (IHC 3	8+ / FISH ≥ 2.0)	113	(11)	109	(11)
Ki67 high (> 14%, N=	=1788)	588	(66)	568	(64)

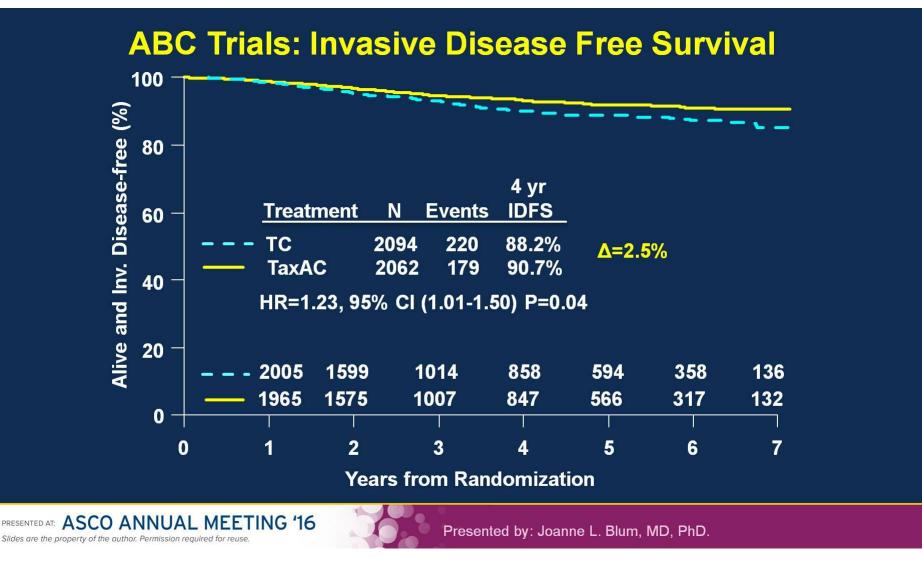
DBCG 07–READ Results

DBCG 07–READ Subgroup Analysis

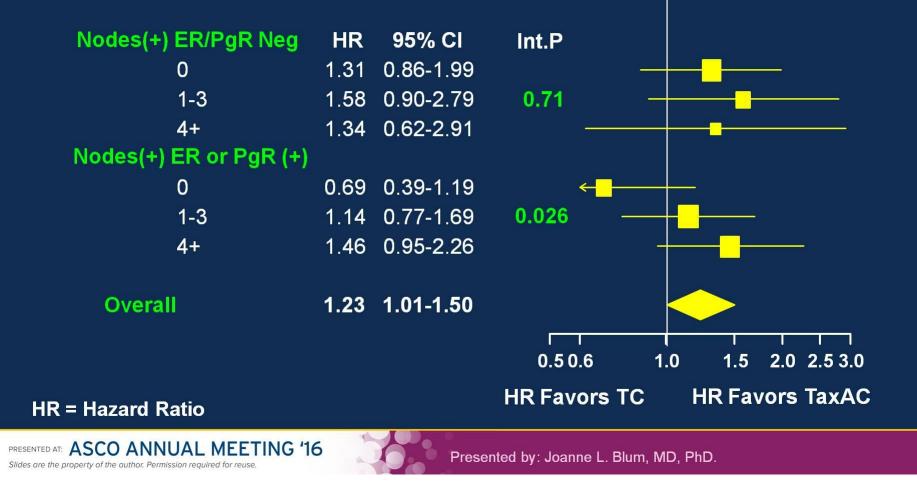
Lymph node status not included in subgroup analysis

Timeline and Accrual of ABC Trials

Trial	Arms	Accrual	Dates of Accrual	Median F/U, yrs	Funding
USOR 06-090	TC TaxAC	1295	MAY 2007 to JUN 2009	6.3	Sanofi
NSABP B-46I USOR	TC TaxAC	1077	MAY 2009 to JAN 2012	4.8	Genentech
07132	*TC-BV	556	JAN 2012		
NSABP B-49	TC TaxAC	1870	APR 2012 to NOV 2013	2.2	СТЕР


*not included in ABC Trials analysis

PRESENTED AT: ASCO ANNUAL MEETING '16 Slides are the property of the author. Permission required for reuse.


5

Presented by: Joanne L. Blum, MD, PhD.

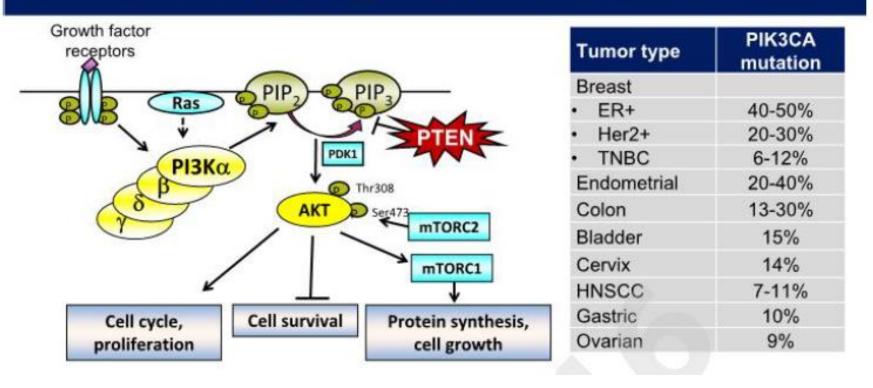
Presented By Joanne Blum at 2016 ASCO Annual Meeting

Forest Plot of IDFS By Hormone and Nodal Status

Presented By Joanne Blum at 2016 ASCO Annual Meeting

In the Clinic ...

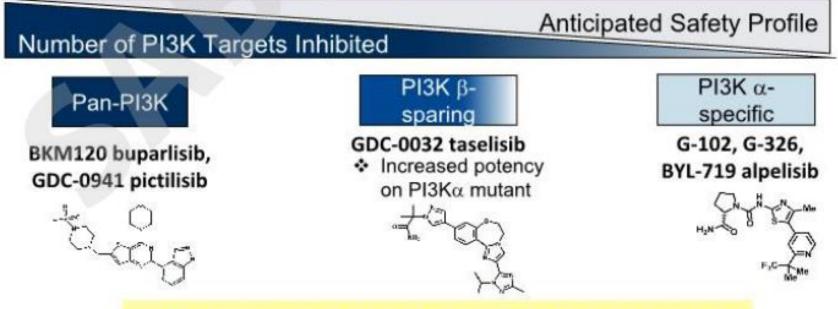
- EC→T equivalent to T in READ trial among TOP2A normal patients
- But TOP2A testing is not routinely performed
 16% of patients had alterations
- No data presented on nonrandomized cohort with TOP2A alterations with EC \rightarrow T
- ABC Meta-analysis (ASCO 2016) showed benefit for anthracyclines among HR- and HR+/node+ patients


The PI3K inhibitor, taselisib, has enhanced potency in PIK3CA mutant models through a unique mechanism of action

Lori Friedman, Kyle Edgar, Kyung Song, Stephen Schmidt, Donald Kirkpatrick, Lilian Phu, Michelle Nannini, Rebecca Hong, Eric Cheng, Lisa Crocker, Amy Young, Deepak Sampath

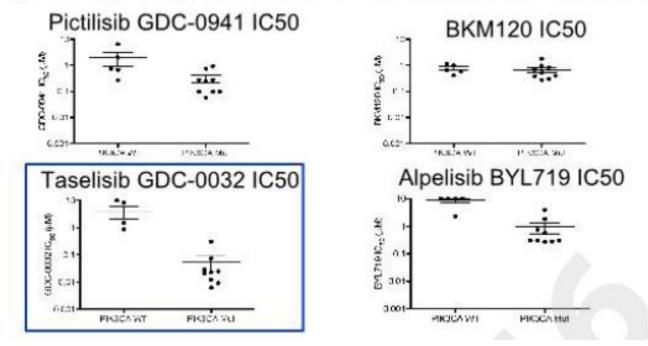
> Genentech, Inc. SABCS, December 9, 2016

S6-04 The PI3K inhibitor, taselisib, has enhanced potency in PIK3CA mutant models through a unique mechanism of action

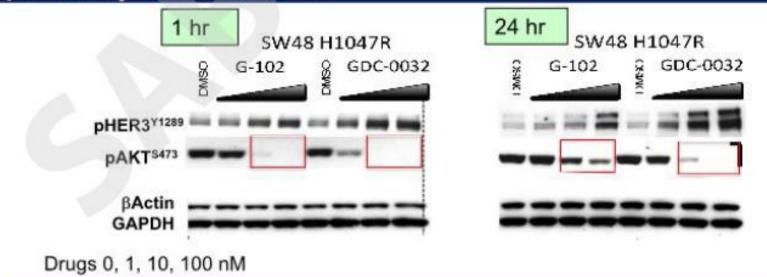

PIK3CA is frequently mutated in cancer

PIK3CA Pathway in Breast Cancer

- Prognostic value of PIK3CA mutation status is controversial in HER2-negative patients
- PIK3CA mutations associated with resistance to HER2directed therapies
 - CLEOPATRA: PIK3CA mutation status associated with shorter PFS in both arms
 - wild-type versus mutated *PIK3CA* in both the control (13.8 v 8.6 months) and pertuzumab groups (21.8 v 12.5 months).
 - NeoALTTO: PIK3CA single gene and pathway mutations associated with lower pCR rate
 - Adding lapatinib to trastuzumab increased pCR
- PIK3CA mutations may be associated with endocrine resistance
- PI3K inhibitors may be best in combination with other targeted therapies due to activation of compensatory feedback loops

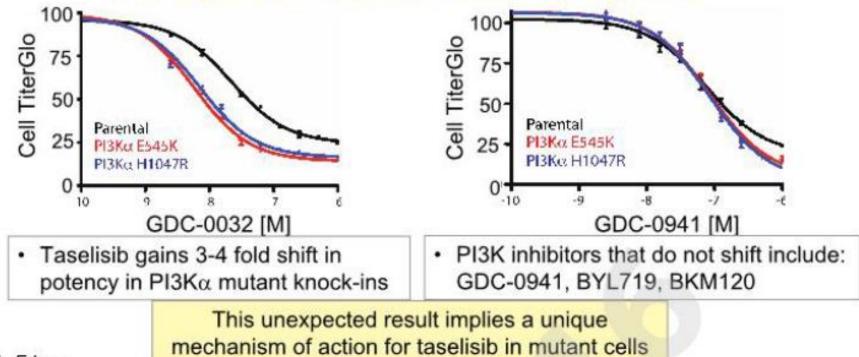

Can a PI3K inhibitor with the right balance of activity and tolerability be created?

- Therapeutic index is a balance of safety and activity
- PI3K inhibitors have a narrow therapeutic index


Taselisib shows increased potency against PIK3CA mutant cells – comparison with other PI3K inhibitors

4 day Celltiter glo assay; Each dot represents IC50 of a different cancer cell line

What is the role of feedback? PI3K pathway inhibitors relieve negative feedback, leading to attenuation of antitumor activity and priming the pathway for reactivation


Taselisib (GDC-0032) protects against RTK-driven pathway reactivation

- Most PI3K inhibitors are effective at 1 hr and lose potency at 24 hrs
- Taselisib (GDC-0032) is better at suppressing signaling at 24 hrs

Knock-in of mutant PI3Kα increases cellular potency for taselisib, but not other PI3K inhibitors

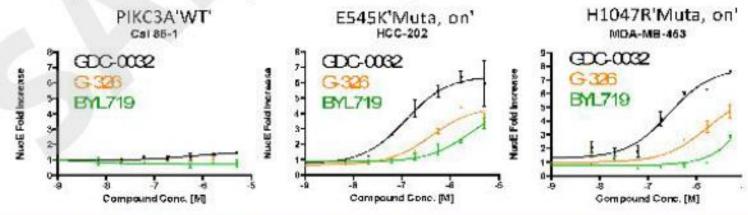
SW48 isogenic cell lines (PI3Ka WT, mutants); 4 day assay

Kyle Edgar

Taselisib (GDC-0032) leads to degradation of mutant PI3K α protein, uniquely among clinical compounds

HDQP1 breast cancer cells (wildtype)					нс			bre 3C/				lls	
GDC-0032 24 hrs c p110c*_	0.02 LIM	0.06 uM	0.18 uM	0.66 uM	1.6 uM 6 uM	•	0.02 uM	0.08 uM	0.18 uM	0.66 uM	1.6 uM	8 uM	р •
Actin 🛥	-	-	-	_	-	-	-	-	-	-	-	-	•
HCC1954 cells (PIK3CA H1047R) 24 hrs		G MILLIOO	C-00	32 	G mano				0	BY	L71	oman 6	C
p110	a" 🕳		- 44	111	-		-	11			44	444	p

p110a protein degradation is:

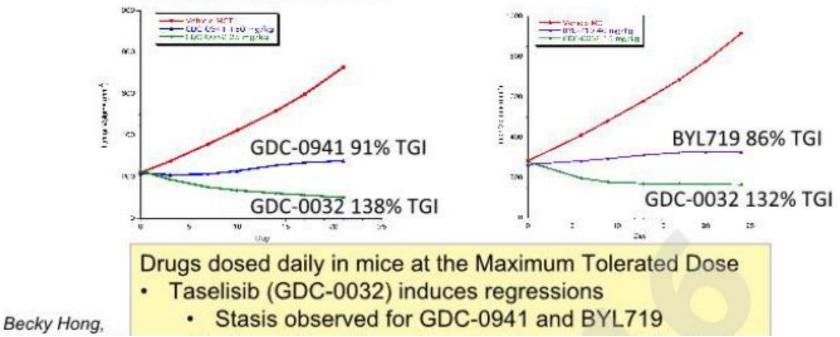

- dose-dependent
- time-dependent
- specific to PI3K mutants

Other clinical compounds do not induce degradation of mutant protein

Hypothesis – PI3K inhibitors which induce degradation of the mutant protein will have greater efficacy which may widen the therapeutic index

Taselisib induces apoptotic cell death in PIK3CA mutant cells

- · 3 day cell death assay
- Taselisib (GDC-0032) compared to PI3Kalpha inhibitors G-326 and BYL719



Taselisib (GDC-0032) shows strongest induction of apoptosis

 Stronger apoptosis is likely the impact of maintaining pathway suppression after feedback has occurred Taselisib has greater maximal efficacy than other PI3K inhibitors, in PIK3CA mutant xenografts

HCC-1954 breast cancer xenograft PIK3CA H1047R mutant

HCC-1954 breast cancer xenograft PIK3CA H1047R mutant

PI3K Inhibitor Clinical Trials

- FERGI: Fulvestrant ± Pictilisib N=168
 No difference in PFS (6.6 vs 5.1 months)
- BELLE3: Fulvestrant ± Buparlisib N=432
 PFS 3.9 vs 1.8 months (HR 0.67) BUT side effects
- Multiple ongoing clinical trials
 - SANDPIPER: Fulvestrant ± Taselisib
 - Ph1b/2: Enzalutamide + Taselisib for AR+ TNBC
 - BYL719 in combination with letrozole, paclitaxel

San Antonio Breast Cancer Symposium—December 6-10, 2016

Double-blind Concordance Study of Breast Cancer Treatment Recommendations Between Manipal Multidisciplinary Tumor Board and an Artificial Intelligence Advisor for Oncology IBM's Watson For Oncology

> Somashekhar, Rohit, Arun K, Martin S, Andrew N, Amit R San Antonio Breast Cancer Symposium San Antonio, Texas, USA Char.S.P. December 6, 2016

Prof.Dr. Somashekhar.S.P.

MS, MCh (Oncosurgery), FRCS.Ed

Chairman Oncology Manipal Health Enterprise MHEPL Head Of Department Department of Surgical & Gynec. Oncology , Robotics & HIPEC

> Manipal Comprehensive Cancer Centre Manipal Hospital, Bangalore, India

S6-07 Double blinded validation study to assess performance of IBM articial intelligence platfrom Watson for oncology in comparison to Manipal multidisciplinary tumour board – First study of 638 breast cancer cases

San Antonio Breast Cancer Symposium—December 6-10, 2016 Manipal Hospital, Bangalore

- 600-bed quaternary care facility
- 52 specialties & 60 sub-specialties
- Comprehensive Cancer Center
- Ranked in top 10 multi-specialty hospitals in India
- Best hospital in Bangalore, 10 consecutive years
- 1st hospital in Karnataka, India to introduce robotic surgery
- NABH and NABL accredited
- ISO 9001:2000

How do we stay up to date with ongoing research and treatment options?

Watson for Oncology: Evidence-based, personalized treatment plans

San Antonio Breast Cancer Symposium-December 6-10, 2016

Dedicated

Dedicated Cloud Triple redundancy Speed

Expansion

Second and Third line treatment options New cancers

Corpus

The Corpus containsHealthline Medical Taxonomy to varied sources from: ASCO, EBSCO information services Elsevier, MMS, NCCN guidelines, US Government, Wiley 250 textbooks 200 medical journals 15 million pages of Onco

Refresh and Maintenance of corpus

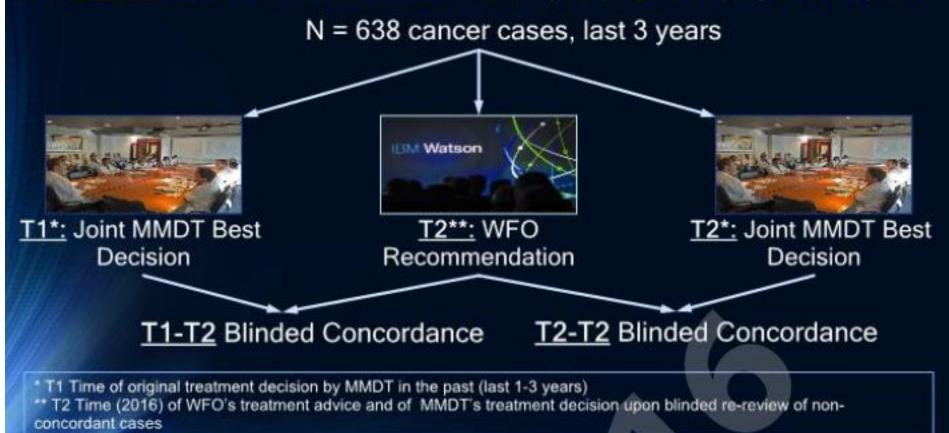
New cases

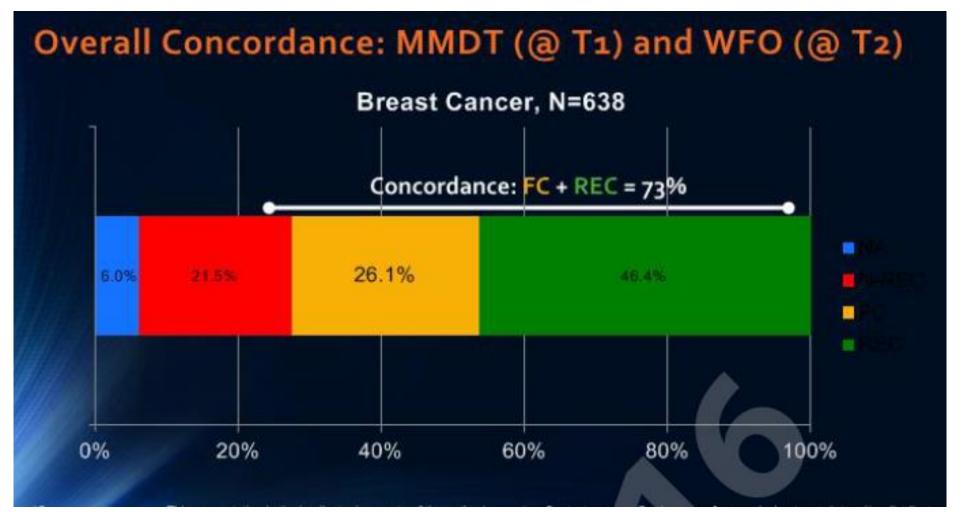
Memorial Skan Katuring Cance: Center.

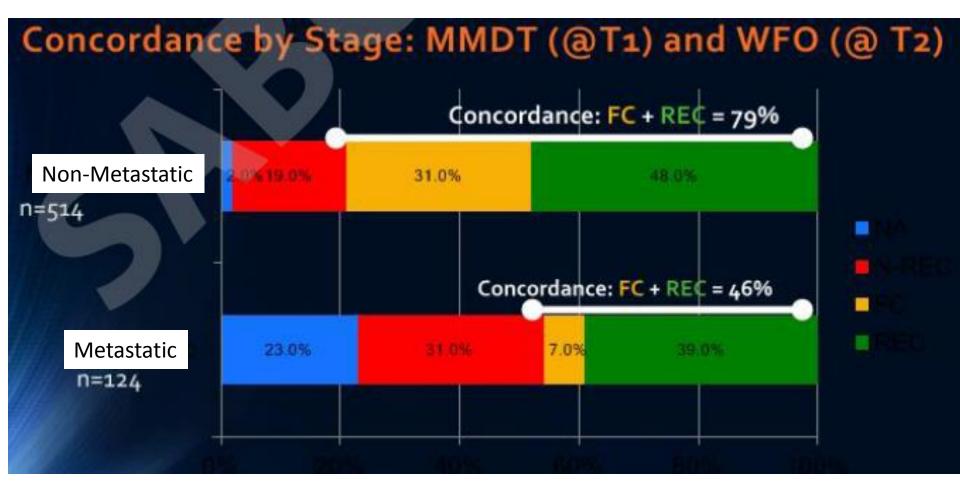
Search for	kosp filo	_	And streybey	Ant Day & Appt Sur	ntaty	49 Kew						
Select	+ Time	Hosp No.	liame	Ape	QC Status	IconProfile	Ask Watson	Consult Order	Telephone	Status Aritike Time	Service	Remarks
	09:00	<u>917</u>	41841 SA	S1/Female	Excessionic file	•	ASS.MAISER	Not Undered		Societ	Review Apportment	
L	\$49.53	29.85		89/Fermale	Electronic film	15P	ASK WATSCH	Not Ordered		Bunked	Review Aquistment	
	09:28	21-E		07/Female	E econic file	0 1	ASK WATSTR	at Ordered		Booked	Beview Apportment	
	94:33	21.0		77/Maia	Exercise File	æ	ASK WATECH	Not Orderod	3465674	Donied	Review Argenistment	
0	00:40	2268		40/Female	Cleannair file	07	ASK WATSON	Not Ordered	26403295	Robal	Inster Aspectaneo	
	05:50	29-6		41/Maie	Electronic tile	æ	ASK ARISON	Not Ordered		Booked	Review Appointment	
	10.00	98.8		54/Main	Exclusion File	179	ASK WATSON	Not Ordered		Soulad	Basines Suprimered	
	10-10	NEB C		72/Make	t emmirale	0	ASK WATSON	Not Ordered	10642501	Reshad	Beview Apephitment	
	10:20	2010		73/Male	Equipic Fig	æ	ASK WATSON	Not Undered	26721777	Dorked	Review Coppirament	
0	\$2:30	320		40/Make	Extentio The	æ	ASK MATSON	Not Ordered		Realized	Invite Academent	
	10:45	SEE		54/Male	Campric Sile	0	ASK MATSON	Not Ordered	9026943237	Resked	Edulew Apportment	
	10.10	Mer.		100/Main		æ	ASK WATSON	Not Ordered	94870540230	Rectived	Caulow Coprintment	
0	11-00	12EB		6/Fernals	Cettonic file	0	03K.M2T326	Not Ordered		Bohal	Beniew September	
	11:18	24.0		10/Female	Exclusion	æ	ASS. MALSON	Not Undered		Dooked	Review Appointment	
	11:25	21.0		74/Permile	Electronic File	æ	ASK WATSCH	Not Orderoit	25426133	Doted .	Review Sopoictment	
	81:30	22.0		13/Female	Partness ris	0	ASK WATSCH	Not Ordered		builted	Beview Association	
	11:45	110		05/Female	Exclusic File	æ	ASK WATSON	Nut Ordered	2122044	finial.	Sected Argonistment	

WFO Output

- Analyzes >100 patient attributes for breast cancer
- Some user attribute abstraction and WFO entry
- RX recommendations ranked in 3 color categories:
 - Green: Recommended Rx (REC)
 - Amber: For Consideration (FC)
 - And: Not RECommended (N-REC)


Provides supporting evidence




40 seconds to analyze chart 60 seconds to generate recommendation report

Breast Cancer Concordance Study at Manipal Hospital

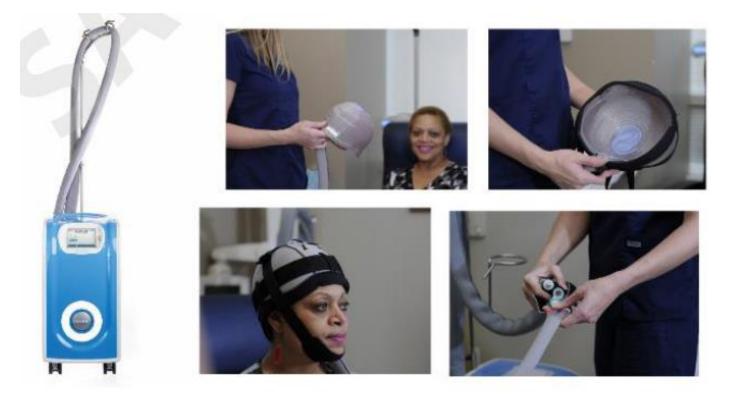
Evaluate concordance of treatment recommendations between WFO and local expertise (Manipal Multidisciplinary Tumour Board), MMDT

Concordance WFO (@T2) and MMDT (@T1* v. T2**) (N= 638 Breast Cancer Cases)

Point/Concord ance	n	%	n	%
T1*	296	46	463	73
T2**	381	60	574	90

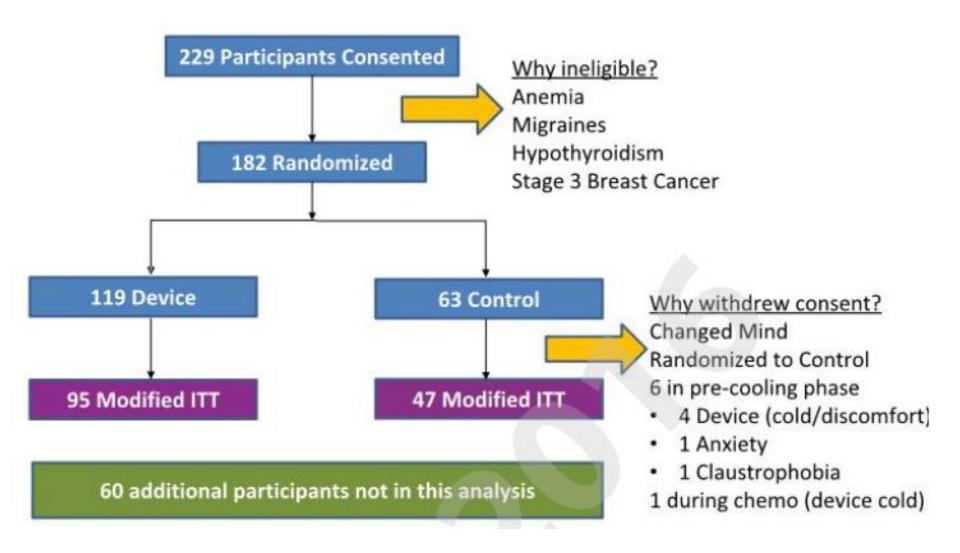
Comments:

- Study was not designed to assess why recommendations differed or inferiority/superiority
- Goal was to reduce "cognitive burden" on oncologists by providing clinically actionable insights to assist in treating patients
- Interesting concept but unclear how this impacts practice

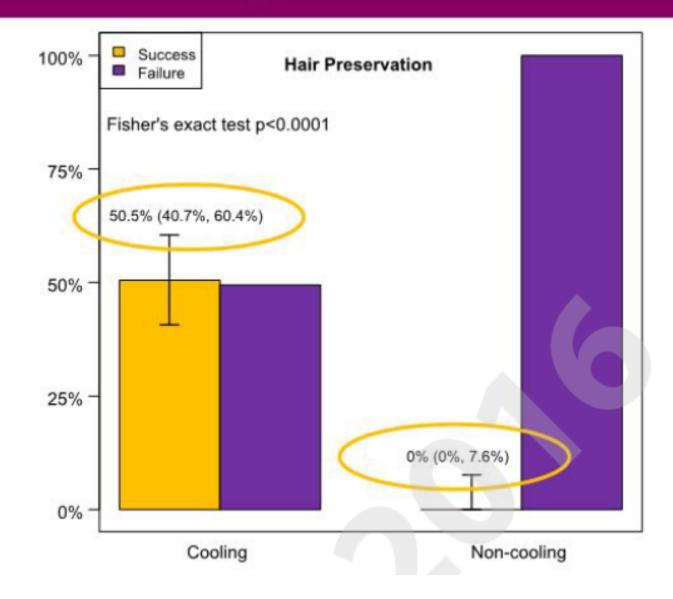

San Antonio Breast Cancer Symposium December 6-10, 2016

Baylor College of Medicine

Scalp Cooling Alopecia Prevention Trial (SCALP)

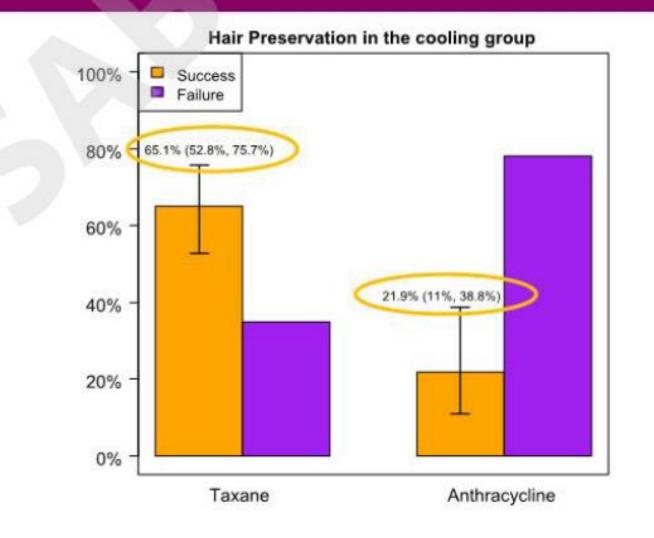

Julie Nangia, Tao Wang, Polly Niravath, Kristen Otte, Cynthia Osborne, Steven Papish, Frankie Holmes, Jame Abraham, Shari Goldfarb, Jay Courtright, Richard Paxman, Mari Rude, Susan Hilsenbeck, Kent Osborne, Mothaffar Rimawi

S5-02 Scalp Cooling Alopecia Prevention trial (SCALP) for patients with early stage breast cancer


- 229 women from 12/2013 9/2016
- 7 US sites (3 academic, 4 community)
- Inclusion: Stage 1 or 2, neo/adjuvant
- Exclusion: migraines, anemia, hypothyroidism, uncontrolled medical condition

SCALP

Results: Primary Outcome


Baylor College of Medicine

Discussion

San Antonio Breast Cancer Symposium, December 6-10, 2016

Baylor College of Medicine

San Antonio Breast Cancer Symposium, December 6-10, 2016

Results: Adverse Events

Baylor College of Medicine

Adverse Device Effects

	Cooling N = 101								
AADEs	Cycle 1	Cycle 2	Cycle 3	Cycle 4					
(CTCAE V4.0)	n=101	n=84	n=66	n=62					
Headache	11.9%	10.7%	1.5%	6.5%					
Nausea	4%	2.4%	1.5%	1.6%					
Dizziness	3%	1.2%							
Chills	1%								
Paresthesia	1%								
Pruritus	1%								
Sinus pain			1.5%						
Skin & SQ tissue									
disorders	1%								
Skin ulceration	1%								

Results: Quality of Life

San Antonio Breast Cancer Symposium, December 6-10, 2016

Baylor College of Medicine

Patient Reported Comfort Scale

	Cooling (N = 101)							
Comfort Scale	Cycle 1	Cycle 2	Cycle 3	Cycle 4				
	n=101	n=84	n=66	n=62				
Very Comfortable	11.9%	16.7%	16.7%	14.5%				
Reasonable Comfortable	51.5%	39.3%	47%	50%				
Comfortable	28.7%	26.2%	21.2%	24.2%				
Uncomfortable	5.9%	13.1%	12.1%	9.7%				
Very Uncomfortable	-	2.4%		-				
Not Assessed	2%	2.4%	3%	1.6%				

Quality of Life Assessments showed no difference

Thank you