# Best of ASCO for Advanced NSCLC

#### Fadlo Raja Khuri, MD, FACP

Professor and Roberto C. Goizueta Chair Department of Hematology & Medical Oncology Deputy Director Winship Cancer Institute Georgia Cancer Coalition Professor



- I am a consultant for Pfizer and Sanofi-Aventis.
- I have received research funding from Sanofi-Aventis, BMS, Onyx, Ligand, Oxigene, Pfizer, Genentech, and Novartis for investigator initiated research in drug development and head & neck, and lung cancers over the last 15 years.
- I have received more than ten-fold more peer reviewed government funding (NCI, DoD) than total pharmaceutical funding over the last 15 years.
- My opinions on approaches to the treatment of lung cancer are my own and, while evidence based, are potentially controversial.

#### **Learning Objectives**

- To understand the present role of maintenance therapy in advanced NSCLC
- Appropriate utilization of EGFR inhibitors
- Discussion of individualized treatment approaches

#### Outline

- Continuation Maintenance Therapy
- EGFR tyrosine kinase inhibition
  - First-line therapy
  - Maintenance therapy
  - Combination therapy
- VEGF Inhibition
- Individualized therapy

#### Maintenance Therapy for Advanced NSCLC

- Refers to the use of systemic therapy following 4 to 6 cycles of combination chemotherapy in the front-line setting
- FDA-approved agents
  - Pemetrexed
  - Erlotinib
  - Improvement in survival noted with both of these agents





#### 'Switch' or 'Continuation' Maintenance Therapy?

- Pemetrexed and erlotinib were both studied as switch maintenance therapy
- Bevacizumab and cetuximab are used as continuation maintenance following administration in combination with chemotherapy
  - Their role in this setting is unproven

PARAMOUNT: Phase III Study of Maintenance Pemetrexed (Pem) Plus Best Supportive Care (BSC) Versus Placebo Plus BSC Immediately Following Induction Treatment with Pem Plus Cisplatin for Advanced Nonsquamous Non-small Cell Lung Cancer

Abstract # 7510

L. G. Paz-Ares<sup>1</sup>, F. de Marinis<sup>2</sup>, M. Dediu<sup>3</sup>, M. Thomas<sup>4</sup>, J.L. Pujol<sup>5</sup>, P. Bidoli<sup>6</sup>, O. Molinier<sup>7</sup>, T.P. Sahoo<sup>8</sup>, E. Laack<sup>9</sup>, M. Reck<sup>10</sup>, J. Corral<sup>1</sup>, S. Melemed<sup>11</sup>, W. John<sup>11</sup>, N. Chouaki<sup>12</sup>, A. H. Zimmermann<sup>11</sup>, C. Visseren-Grul<sup>13</sup>, C. Gridelli<sup>14</sup>



#### **PARAMOUNT:** Study Objectives

- Primary objective: progression-free survival (PFS)
- Secondary objectives:
  - Overall survival (OS)
  - Objective tumor response rate (RR) (RECIST 1.0)
  - Patient-reported outcomes (EQ-5D)
  - Resource utilization
  - Adverse events (AEs)
- All endpoints measured from date of randomization, after completion of induction chemotherapy







# **PARAMOUNT Study: Implications**

- First randomized study to evaluate the role of continuation maintenance therapy (monotherapy)
- Pemetrexed is an agent with good therapeutic index
- Demonstrated modest PFS benefit
- No detrimental effects of QOL with pemetrexed
- · Survival data are awaited

# Our Approach

- Maintenance therapy for patients that present with symptomatic or 'large disease burden'
- For patients with EGFR mutation, EGFR TKI therapy is recommended
- Switch maintenance therapy

   Await survival data from PARAMOUNT
- For patients on bevacizumab-based regimen, continuation of bevacizumab









|                                                                      | Interim analysis<br>(Aug 2, 2010) |                        | Updated analysis<br>(Jan 26, 2011) |                        |  |
|----------------------------------------------------------------------|-----------------------------------|------------------------|------------------------------------|------------------------|--|
|                                                                      | Erlotinib<br>(n=77)               | Chemotherapy<br>(n=76) | Erlotinib<br>(n=86)                | Chemotherapy<br>(n=87) |  |
| Median age, yrs (range)                                              | 64 (24–82)                        | 64 (29–82)             | 65 (24–82)                         | 65 (29–82)             |  |
| Gender, %<br>Male<br>Female                                          | 32<br>68                          | 21<br>79               | 33<br>67                           | 22<br>78               |  |
| ECOG PS, %<br>0<br>1<br>2                                            | 30<br>57<br>13                    | 34<br>54<br>12         | 31<br>55<br>14                     | 34<br>52<br>14         |  |
| Smoking status, %<br>Current smoker<br>Former smoker<br>Never smoker | 4<br>26<br>70                     | 13<br>13<br>74         | 8<br>26<br>66                      | 14<br>14<br>72         |  |
| EGFR mutation type, %<br>Exon 19 deletion<br>L858R mutation          | 64<br>36                          | 63<br>37               | 66<br>34                           | 67<br>33               |  |









|                                                                           | Gefitinib (n=148)             | Placebo (n=148)               |  |
|---------------------------------------------------------------------------|-------------------------------|-------------------------------|--|
| Age <65 years, n (%)                                                      | 129 (87.2)                    | 130 (87.9)                    |  |
| Median age (range), years                                                 | 54 (31-79)                    | 54 (20-75)                    |  |
| Gender,† n (%)<br>Female<br>Male                                          | 65 (43.9)<br>83 (56.1)        | 56 (37.8)<br>92 (62.2)        |  |
| Asian ethnicity, n (%)                                                    | 148 (100.0)                   | 148 (100.0)                   |  |
| WHO PS, n (%)<br>0, 1, 2                                                  | 69 (46.6), 76 (51.4), 3 (2.0) | 72 (48.6), 72 (48.6), 4 (2.7) |  |
| Smoking history,† n (%)<br>Smoker (ex- or current smoker)<br>Never smoker | 69 (46.6)<br>79 (53.4)        | 67 (45.3)<br>81 (54.7)        |  |
| Histology,† n (%)<br>Adenocarcinoma<br>Squamous                           | 105 (70.9)<br>27 (18.2)       | 104 (70.3)<br>30 (20.3)       |  |
| Disease stage, n (%)<br>IIIB<br>IV                                        | 42 (28.4)<br>106 (71.6)       | 32 (21.6)<br>115 (77.7)       |  |
| First-line taxane-based chemotherapy, n (%)                               | 60 (40.5)                     | 66 (44.6)                     |  |
| Response (CR/PR, SD) to first-line therapy, n (%)                         | 58 (39.2), 90 (60.8)          | 51 (34.5), 97 (65.5)          |  |















- Gefitinib improved PFS, but there was no improvement in OS as maintenance therapy
- The effect in EGFR mutated tumors is similar to that seen with erlotinib
- Benefit in patients with wild-type EGFR was minimal
- Once again supports the notion that EGFR mutation is a predictive marker for EGFR TKIs





- Erlotinib in combination with VEGF inhibitors
   No improvement in OS
- Erlotinib in combination with IGF-1R inhibitors
   No efficacy advantage in unselected patients
- · Erlotinib in combination with HDAC inhibitors
  - Benefit may be predicted by E-cadherin expression status















#### **VEGF** Inhibition in NSCLC

- Bevacizumab improves survival in combination with carboplatin and paclitaxel in advanced non-squamous NSCLC
- VEGF tyrosine kinase inhibitors have demonstrated single agent activity in NSCLC
- Combination strategies with VEGFR TKIs have been disappointing to date









| Summary of Adverse Events and Serious                 |                                       |                                     |  |  |  |  |
|-------------------------------------------------------|---------------------------------------|-------------------------------------|--|--|--|--|
| Adverse                                               | Arm A<br>Motesanib + C/P<br>(N = 533) | Arm B<br>Placebo + C/P<br>(N = 539) |  |  |  |  |
| Patients with grade ≥3 adverse events, n (%)          | 388 (73)                              | 319 (59)                            |  |  |  |  |
| Grade 3                                               | 201 (38)                              | 192 (36)                            |  |  |  |  |
| Grade 4                                               | 113 (21)                              | 77 (14)                             |  |  |  |  |
| Grade 5                                               | 74 (14)                               | 50 (9)                              |  |  |  |  |
| Serious adverse events                                | 261 (49)                              | 184 (34)                            |  |  |  |  |
| Patients with serious grade ≥3 adverse events, n (%)* | 239 (45)                              | 161 (30)                            |  |  |  |  |
| Neutropenia                                           | 28 (5)                                | 12 (2)                              |  |  |  |  |
| Diarrhea                                              | 25 (5)                                | 4 (<1)                              |  |  |  |  |
| Febrile neutropenia                                   | 23 (4)                                | 15 (3)                              |  |  |  |  |
| Pneumonia                                             | 20 (4)                                | 7 (1)                               |  |  |  |  |
| Dehydration                                           | 19 (4)                                | 4 (<1)                              |  |  |  |  |
| Non-small-cell lung cancer                            | 16 (3)                                | 12 (2)                              |  |  |  |  |
| Thrombocytopenia                                      | 14 (3)                                | 6 (1)                               |  |  |  |  |
| Pulmonary embolism                                    | 12 (2)                                | 17 (3)                              |  |  |  |  |
| Anemia                                                | 12 (2)                                | 11 (2)                              |  |  |  |  |
| Dyspnea                                               | 11 (2)                                | 20 (4)                              |  |  |  |  |
| Vomiting                                              | 11 (2)                                | 7 (1)                               |  |  |  |  |

11 (2)

11 (2)

4 (<1)

0 (0)

General physical health deterioration

Cholecystitis

\*Patient incidence ≥2%

# VEGFR TKIs in NSCLC: Yet Another Negative Trial

- Lack of survival benefit with VEGFR TKIs
  - Vandetanib
  - Sunitinib
  - Sorafenib
  - Motesanib
- These agents are associated with additional AEs besides the class effects

# **Anti-Angiogenic Therapy in NSCLC**

- Every agent tested to date in NSCLC has failed to demonstrate survival benefit with the exception of bevacizumab
- No predictive marker in the horizon
- Further development will hinge on the ability to select subset of patients that will derive robust benefits

#### Lung Cancer Genomics and Proteomics: Towards Personalized Therapy of Lung Cancer

#### Identification of driver mutations in tumor specimens from 1000 patients with lung adenocarcinoma: The Lung Cancer Mutation Consortium (LCMC)

Abstract # 7506

Mark G Kris

On behalf of the Lung Cancer Mutation Consortium Investigators American Recovery and Relief Act Grand Opportunity Grant NCI 1 RC2 CA148394-01 (Paul Bunn, PI)







# Lung Cancer Mutation Consortium Objectives To test 1000 tumor specimens from patients with lung adenocarcinoma for KRAS, EGFR, BRAF, HER2, PIK3CA, AKT1, NRAS, MEK1, and EML4-ALK, and MET amplification To use the information in real time to either select erlotinib with EGFR mutations or recommend a "LCMC-linked" clinical trial of an agent targeting the specific mutation identified



| # Single    | 97%    | <b>оf</b> оf | muta<br>BRAF |            | S MU    | tuall<br>KRAS | у ехо<br>мек1 | Clusi  | IVE       | PIK3CA |
|-------------|--------|--------------|--------------|------------|---------|---------------|---------------|--------|-----------|--------|
| ALK (38)    | х      |              | 1            | 2          |         | 1             |               | 1      |           |        |
| AKT1 (0)    |        | х            |              |            |         |               |               |        |           |        |
| BRAF (9)    |        |              | х            |            |         |               |               |        |           | 1      |
| EGFR (89)   |        |              |              | х          |         |               |               | 1      |           | 3      |
| HER2 (3)    |        |              |              |            | х       |               |               |        |           |        |
| KRAS (114)  |        |              |              |            |         | х             |               | 1      |           | 1      |
| MEK1 (2)    |        |              |              |            |         |               | х             | 1      |           | 1      |
| MET AMP (3) |        |              |              |            |         |               |               | х      |           |        |
| NRAS (2)    |        |              |              |            |         |               |               |        | Х         |        |
| PIK3CA (6)  |        |              |              |            |         |               |               |        |           | х      |
| Number of   | patier | nts wit      | h variar     | nts in ind | dicated | combin        | ation o       | fgenes | 5 , 3% (1 | 4/516) |

#### Lung Cancer Mutation Consortium LCMC protocols linked to specific molecular lesions detected (I)

| Agent(s)               | LCMC Lead                                                                                                                 |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Erlotinib + OSI 906    | C Rudin                                                                                                                   |
| Erlotinib + MM 121     | L Sequist                                                                                                                 |
| Tivantinib + Erlotinib | J Schiller                                                                                                                |
| GSK1120212             | P Jänne                                                                                                                   |
|                        |                                                                                                                           |
| Crizotinib             | R Camidge                                                                                                                 |
| GSK1120212             | P Jänne                                                                                                                   |
|                        | Agent(s)<br>Erlotinib + OSI 906<br>Erlotinib + MM 121<br>Tivantinib + Erlotinib<br>GSK1120212<br>Crizotinib<br>GSK1120212 |





















| Patient Population                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Accrual</li> <li>April 2004 to April 2006</li> <li>1074 patients enrolled</li> </ul>                                                                                                                                                                                                                                                                     |
| 913 eligible patients                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Specimens collected (eligible pts) <ul> <li>913 pts with pre-surgery serum</li> <li>507 pts with post-surgery serum</li> <li>245 pts with frozen normal tissue specimens</li> <li>456 pts with frozen tumor tissue specimens</li> <li>503 pts with FFPE normal tissue specimens</li> <li>609 pts with FFPE tumor tissue specimens</li> </ul> </li> </ul> |
| CP1271504-70                                                                                                                                                                                                                                                                                                                                                      |





# Conclusions

- Z4031 is the largest prospective multi-institutional lung cancer trial that collected biological materials:
  - Blood before and after resection (plasma, WBCs)
  - · Frozen tumor and frozen non-cancerous lung
  - FFPE tumor and non-cancerous lung
- Usable serum MALDI Proteomic profiles were successfully created from more than 90% of samples
- The predictive accuracy of the proteomic model lacked sufficient power for clinical utility
- Limit of detection for the newest MS platforms is not sufficient for <u>discovering</u> discriminate protein profiles

CP1271504-73

| Conclusions                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>The outcomes for advanced NSCLC continues to improve</li> <li>Stage migration</li> <li>Improved systemic therapy</li> <li>Maintenance therapy</li> <li>Targeted agents</li> <li>Improved supportive care</li> </ul>                    |  |  |  |  |  |
| <ul> <li>Individualized therapy based on tumor characteristics is a reality <ul> <li>EGFR mutation</li> <li>ALK translocation</li> </ul> </li> <li>Patients are open to re-biopsy for molecular studies <ul> <li>Are we?</li> </ul> </li> </ul> |  |  |  |  |  |