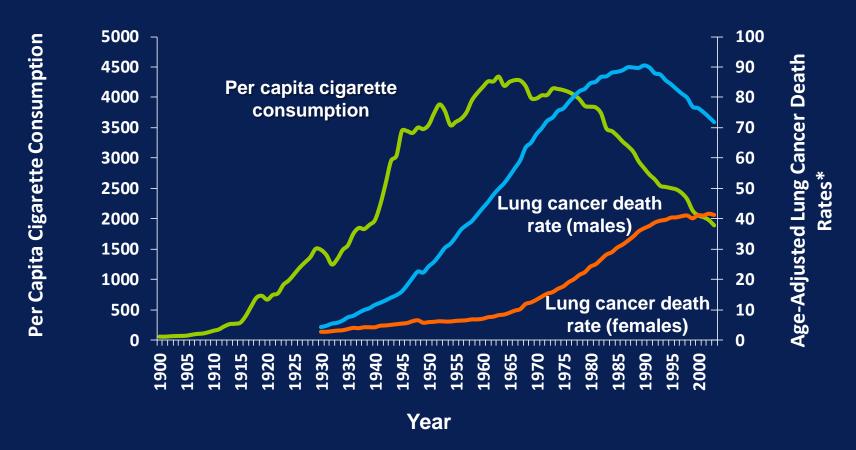

ASCO 2014: Promise and Progress in the Treatment of Lung Cancer

Fadlo Raja Khuri, MD
Professor and Chair
Department of Hematology & Medical Oncology,
Deputy Director
Winship Cancer Institute of Emory University
Roberto C. Goizueta Chair in Cancer Research



September 6, 2014

Educational Objectives

- New roles for targeted therapies for early stage disease?
- Consolidation chemotherapy's last stand in Stage III NSCC?
- Current treatment algorithms for patients with NSCLC with known and unknown driver mutations
- Selecting treatment in patients without an actionable mutation
- Defining the role of prophylactic cranial radiation in small cell lung cancer

The Best Way to Fight Advanced NSCLC Is to Prevent it...Stop Smoking!

^{*}Age-adjusted to 2000 US standard population.

Source: Death rates: US Mortality Public Use Tapes, 1960-2003, US Mortality Volumes, 1930-1959, National Center for Health Statistics, Centers for Disease Control and Prevention, 2005. Cigarette consumption: US Department of Agriculture, 1900-2003.

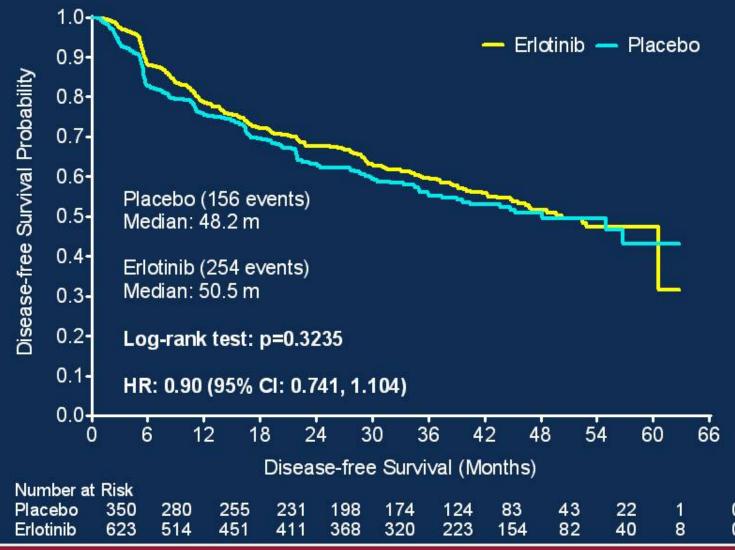
How Much Does Chemotherapy Contribute to Cure in Early Stage NSCLC?

- Stage IB-3%
- Stage II- 10%
- Stage III- 13%

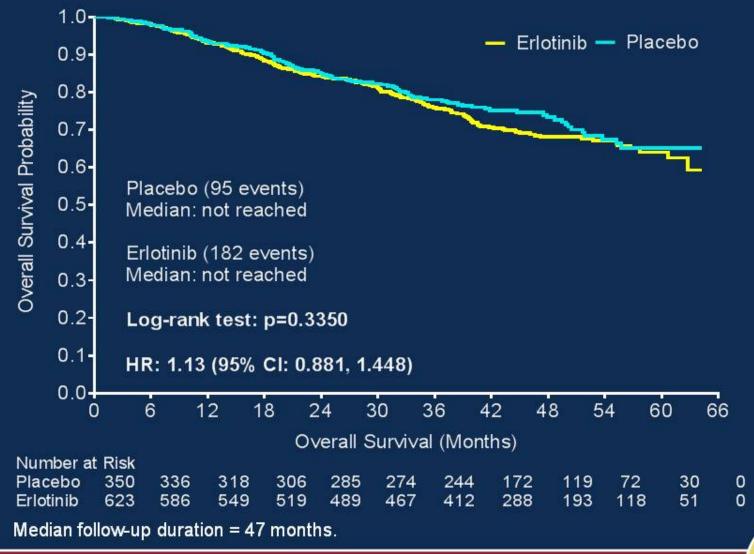
RADIANT Trial Design

Tumor samples EGFR IHC+ and/or EGFR FISH+ (N=973)(n=623)Randomization No adjuvant **Erlotinib** Stage stratified by: chemotherapy 150mg/day IB-IIIA <90 d histology, stage, NSCLC

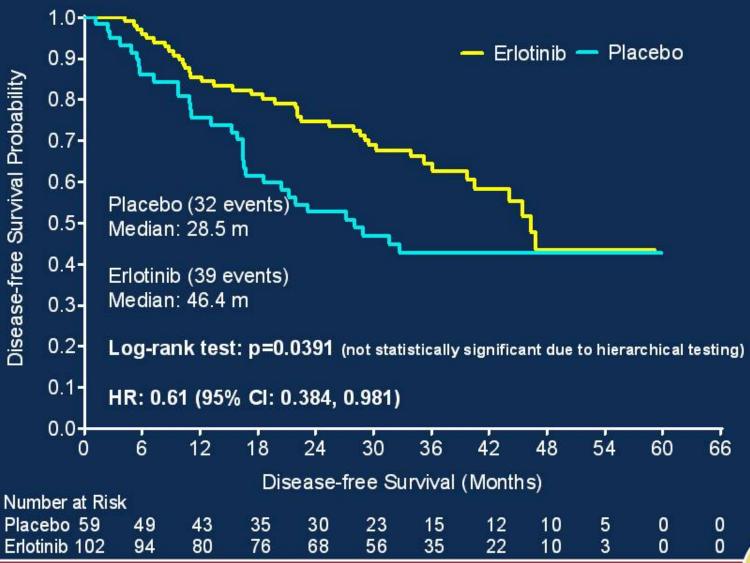
Complete Up to 4 cycles of surgical platinum-based resection doublet

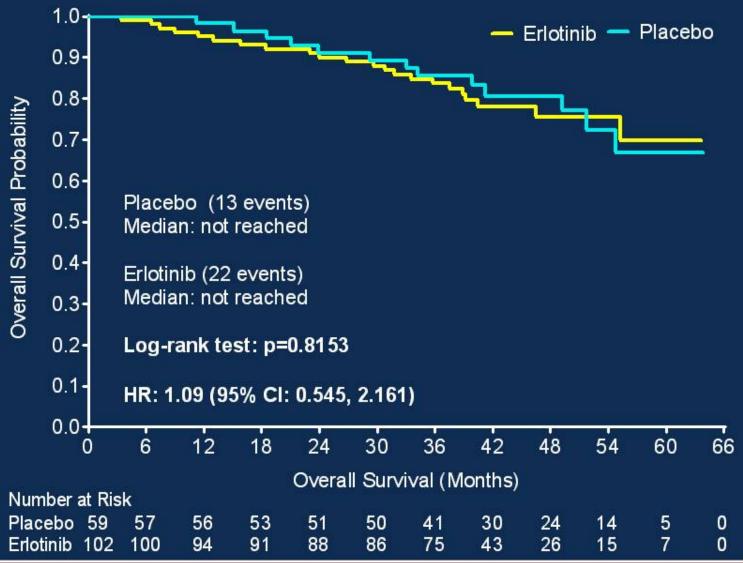

<180 d

prior adjuvant chemo, EGFR FISH status, smoking status, country


2-yr treatment period 2:1 (n=350)Placebo

- Radiology assessment: every 3 months on treatment and yearly during long-term follow up
- Primary endpoint: DFS
- Secondary endpoints: Overall survival (OS); DFS and OS in patients with del19/L858R (EGFR M+)


Disease-free Survival KM Plot


Overall Survival KM Plot

Disease-free Survival: EGFR M+

Overall Survival: EGFR M+

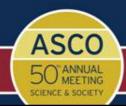
SELECT phase II study

Pennell et al, ASCO 2014, abstract 7514

Adjuvant Erlotinib in EGFR mutation +

76% 2 yr DFS historical control

45% stage I, 27% stage II, 28% stage III


2/3 received nearly 2 years of therapy

SELECT results

- 2 year DFS was 89%!
 - Stage I: 96%
 - Stage II: 78%
 - Stage III: 91%

- 29 recurred: only 4 during erlotinb
 - Most who recurred off erlotinib, responded when re-challenged

Questions to consider

 What is the meaning of improved DFS in the absence of OS in the adjuvant setting?

- What level of evidence is required?
 - Is this sufficient?
 - Phase III trials?

ALCHEMIST (Adjuvant Lung Cancer Enrichment Marker Identification And Sequencing Trial) Umbrella Protocol Will Screen Patients

Trial Category	A151216 ALCHEMIST	E5412	A081105
Target	Registry/Intervention with biopsy at recurrence	ALK+	EGFR mut
Prevalence	all comers	~5%	~10%
Total Sample Size	6000 – 8000	378 (5% inflation)	430 (5% ineligible)
Primary Endpoint	N/A	Overall Survival	Overall Survival
Power	N/A	80%	85%
One-sided α	N/A	0.05	0.05
Hazard Ratio	N/A	0.67	0.67

Decision Tree for Adjuvant Therapy for NSCLC: Utilization of Data to positively impact outcomes


- Personalization of care by histology (pemetrexed and possible bevacizumab) for nonsquamous
- Molecular markers
 - ERCC1, etc, not helpful
 - EGFR and ALK testing critical at the time of surgery
- Support ALCHEMIST by referring and enrolling patients with EGFR and ALK mutation carrying tumors

Locally Advanced NSCLC: Definition

- Stage IIIA
 - Bulky N2 disease
 - Multi-station N2 disease
- Stage IIIB
 - T4 (not including patients with additional nodules in other lobes)
 - N3 disease
 - Supraclavicular lymph node involvement

Approximately 15-20% of NSCLC will fit into the above categories -150,000 to 200,000 cases each year globally

RTOG 9410: Concurrent vs. Sequential

HOG LUN 01-24/USO 02-033

ChemoRT

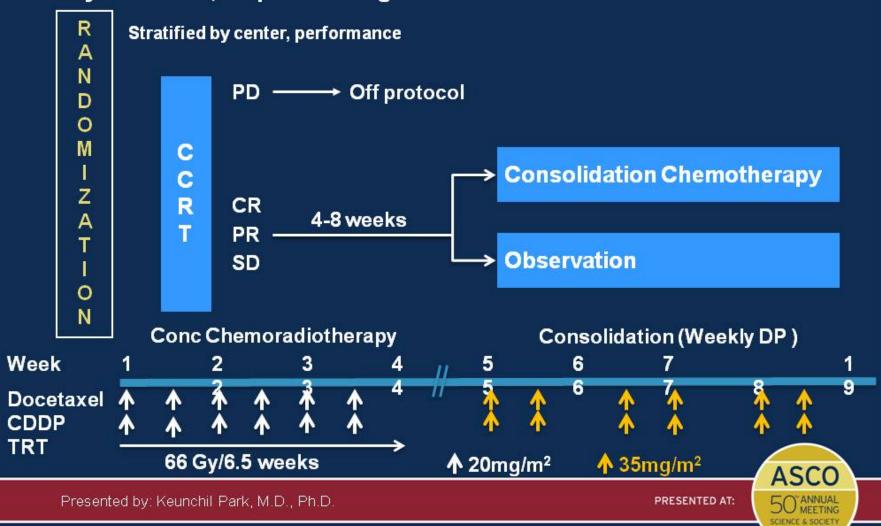
Cisplatin 50 mg/m² IV d 1,8,29,36 Etoposide 50 mg/m² IV d 1-5 & 29-33 Concurrent RT 59.4 Gy (1.8 Gy/fr)


Stratification Variables:
PS 0-1 vs 2
IIIA vs IIIB
CR vs. non-CR

Randomize

Docetaxel 75 mg/m² q 3 wk × 3

Observation

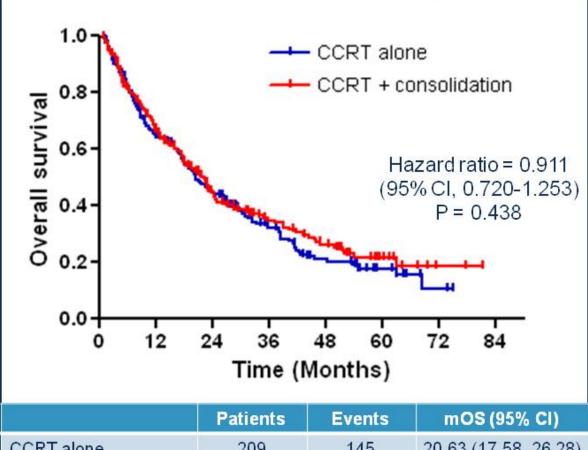

Overall Survival (ITT) Randomized Patients (n=147)

Study Design

Multinational, phase III randomized trial

Locally Advanced, Inoperable Stage III NSCLC

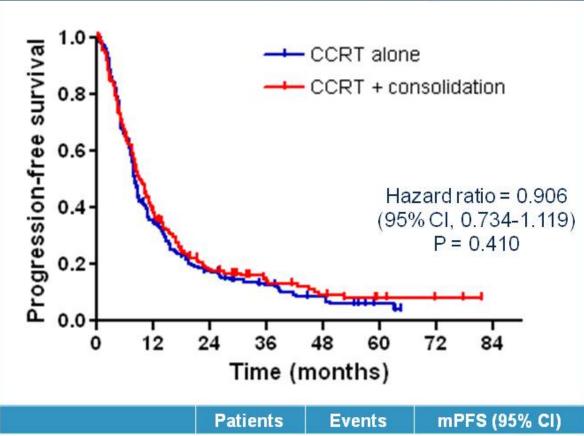
Compliance of Consolidation Chemotherapy


		CCRT + Consolidation (n=209)		
		n	%	
Cycle 3	Day 8	88	42.1%	
	Day 1	4	1.9%	
Cycle 2	Day 8	21	10.1%	
	Day 1	5	2.4%	
Cycle 1	Day 8	15	7.2%	
	Day 1	10	4.8%	
No consolidation		66	31.6%	

Presented by: Keunchil Park, M.D., Ph.D.

Overall Survival

Median follow-up: 50.7 months

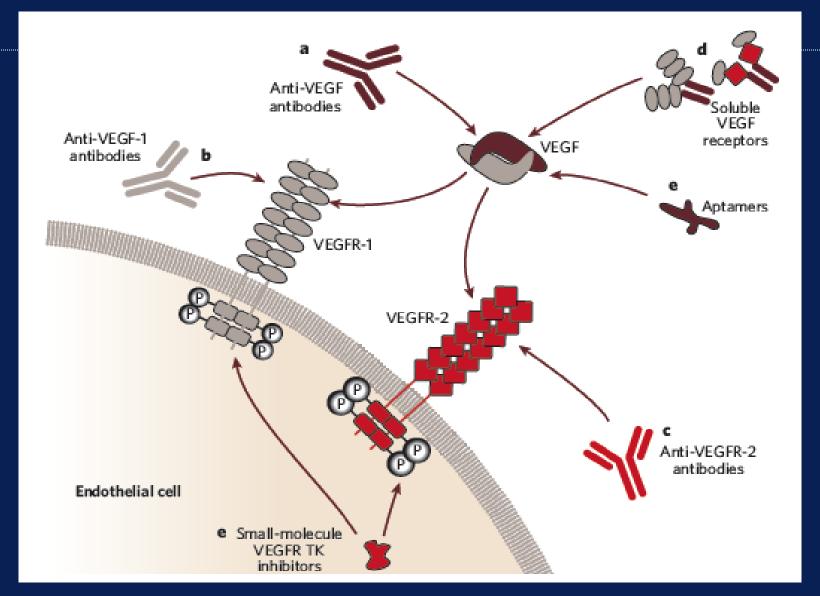

	Patients	Events	mOS (95% CI)
CCRT alone	209	145	20.63 (17.58, 26.28)
CCRT + consolidation	211	134	21.78 (17.71, 24.74)

Presented by: Keunchil Park, M.D., Ph.D

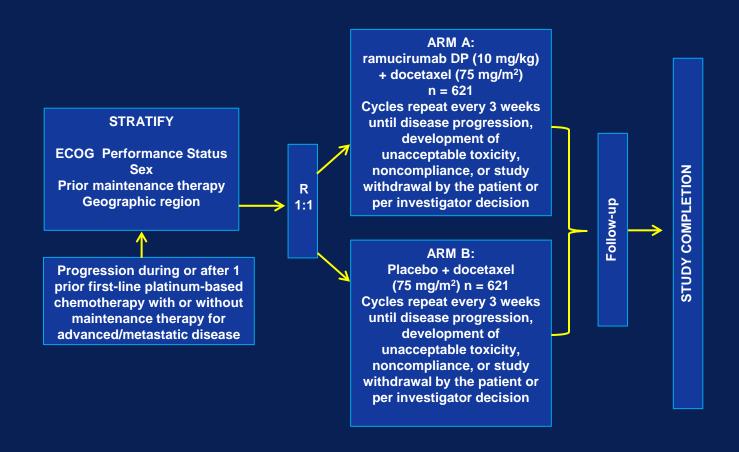
Progression-free Survival

Median follow-up: 50.7 months

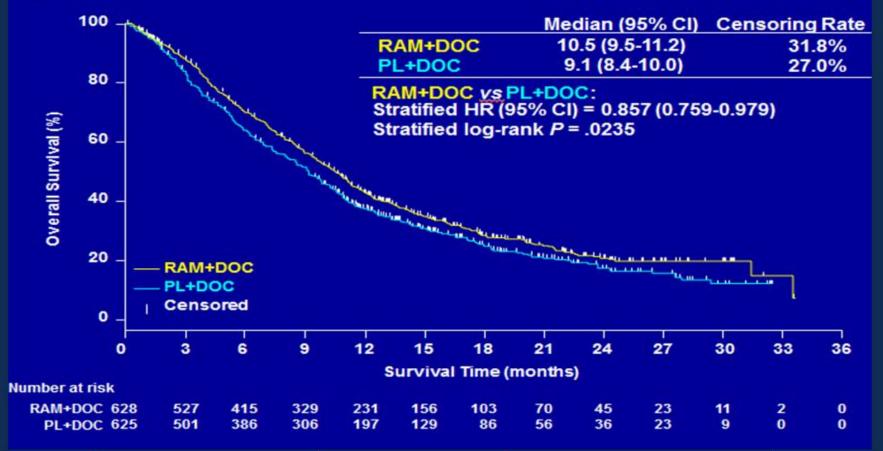
	Patients	Events	mPFS (95% CI)
CCRT alone	209	180	8.05 (7.56, 8.90)
CCRT + consolidation	211	169	9.10 (7.92, 10.94)


Presented by: Keunchil Park, M.D., Ph.D

Key Chemotherapy Questions in Stage III NSCLC


- Is there an optimal drug regimen and cycle number?
- How do we best integrate molecular therapies or immunological approaches?
- How should we advance therapy for marginally resectable stage III disease?
- Can we develop better preclinical models?

VEGF Inhibition

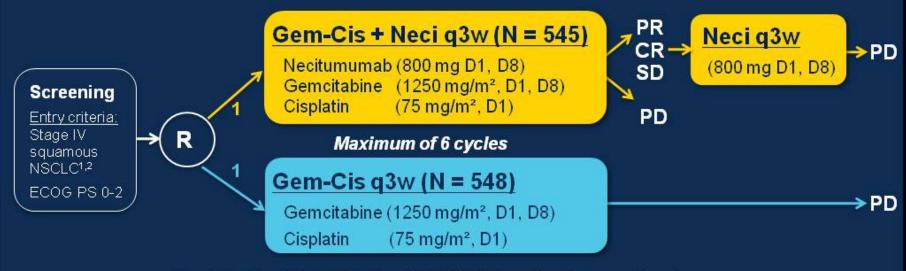

Ferrara N, Nature 2005; 438: 967-974

REVEL: Ramucirumab-Human VEGFR-2 ab

REVEL: Overall Survival

ITT Population

	ORR	Median PFS
RAM + DOC	22.9%	4.5 mo
PL+DOC	13.6% (p<0.001)	3.0 mo (HR 0.76 p<0.0001)


FIRST LINE THERAPY COMBINING CHEMOTHERAPY WITH AN EGFR ANTIBODY – NECITUMUMAB IN SQUAMOUS NSCLC

Haven't we been down this road before? i.e. the FLEX trial?

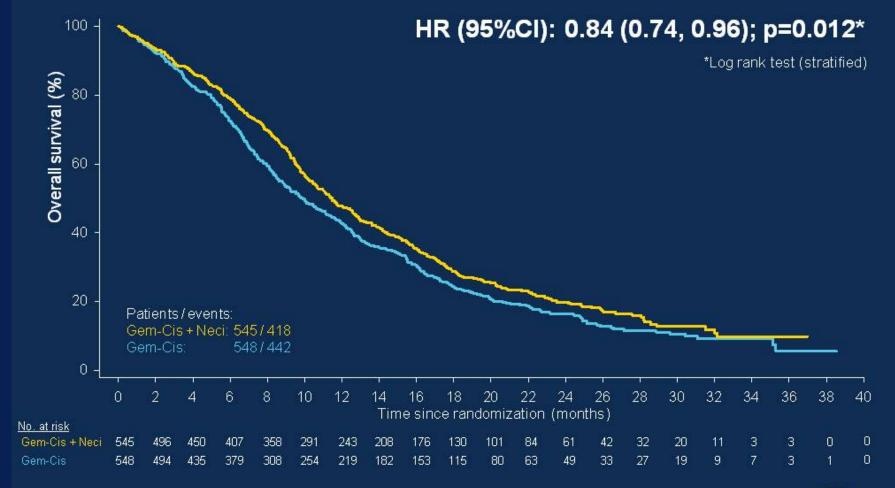
Abstract # 8008 – Thatcher N et al, A randomized, multicenter, open-label, phase III study of gemcitabine-cisplatin (GC) chemotherapy plus necitumumab (IMC-11F8/LY3012211) versus GC alone in the first-line treatment of patients (pts) with stage IV squamous non-small cell lung cancer.

Presented by: Julie R. Brahmer, M.D., M.Sc.

Study Design

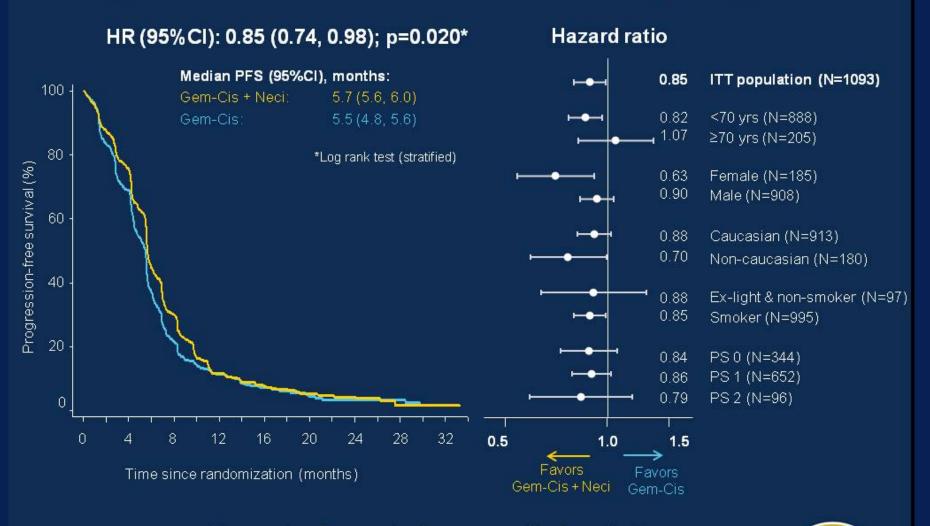
Randomization (R) stratified by: ECOG PS (0-1 vs. 2) and geographic region (North America, Europe and Australia; vs. South America, South Africa and India; vs. Eastern Asia)

Patient selection not based on EGFR protein expression


Radiographic tumor assessment (investigator read): at baseline and every 6 weeks until PD Mandatory tissue collection

¹ AJCC TNM Classification, 7th edition, 2009; ² UICC TNM Classification of Malignant Tumors, 7th edition, 2009.


Presented by: Nick Thatcher


Primary Outcome: Overall Survival (ITT)

Presented by: Nick Thatcher

Progression-Free Survival (ITT)

Progression-free survival as assessed by investigators

Presented by: Nick Thatcher

Is The Glass Half Full or Half Empty?

HALF FULL

- Met its endpoint
- Improveming in multiple subgroups including squamous
- Easier dos compared cetuximab

HALF EMPTY

- Modest
 - urvival enefit

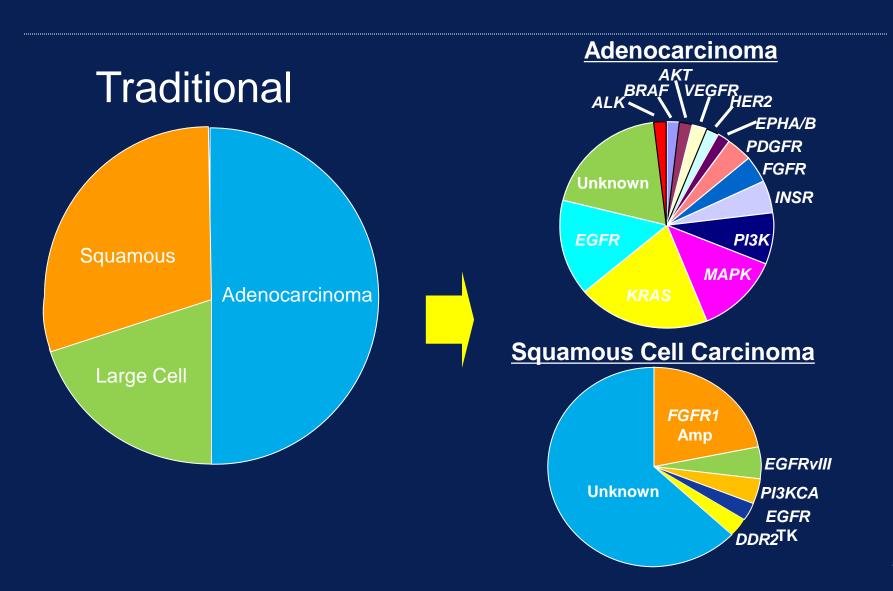
Is wild type EGFR really a target in NSCLC????

ack of iomarker – ts put H core to rest

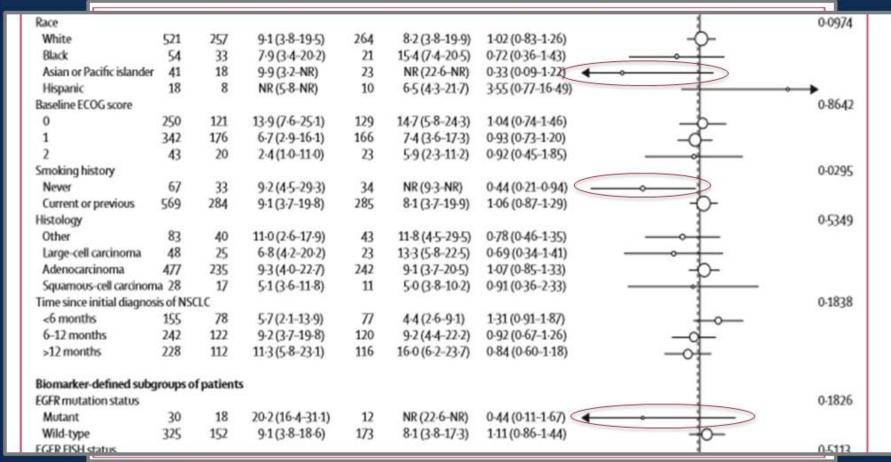
Presented by: Julie R. Brahmer, M.D., M.Sc

ASCO Perspective: Raising the Bar for Clinical Trials by Defining Clinically Meaningful Outcomes

	Patient Population	Current Baseline Median OS (months)	Primary End Point		Secondary End Point	
Cancer Type			Improvement Over Current OS That Would Be Clinically Meaningful (months)	Target HRs	Improvement in 1-Year Survival Rate (%)*	Improvement in PFS (months)
Pancreatic cancer	FOLFIRINOX-eligible patients	10 to 11 ¹⁹	4 to 5	0.67 to 0.69	48 → 63	4 to 5
Pancreatic cancer	Gemcitabine or gemcitabine/nab-paclitaxel- eligible patients	8 to 9 ^{20,21}	3 to 4	0.6 to 0.75	35 → 50	3 to 4
Lung cancer	Nonsquamous cell carcinoma	1322	3.25 to 4	0.76 to 0.8	53 → 61	4
Lung cancer	Squamous cell carcinoma	10 ²³	2.5 to 3	0.77 to 0.8	44 → 53	3
Breast cancer	Metastatic triple negative, previously untreated for metastatic disease	1874.75	4.5 to 6	0.75 to 0.8	63 → 71	4
Colon cancer	Disease progression with all prior therapies (or not a candidate for standard second- or third-line options)	4 to 6 ²⁶	3 to 5	0.67 to 0.67	25 → 35	3 to 5


These two phase III trials don't meet these criteria.

Ellis LM et al JCO 2012


Presented by: Julie R. Brahmer, M.D., M.Sc.

NSCLC Landscape Change - 2014

Erlotinib +/- Bevacizumab as Second-Line Therapy (BeTa): Subgroup Analysis

Herbst, Lancet 2011

Presented by: H. Jack West

Study design

Chemotherapy-naïve

Stage IIIB/IV or

postoperative recurrence

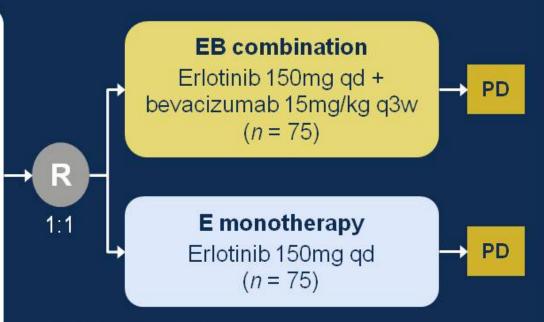
Non-squamous NSCLC

Activating EGFR mutations*

Exon 19 deletion

Exon 21 L858R

Age ≥20 years


PS 0-1

No brain metastasis

*T790M excluded

Stratification factors:

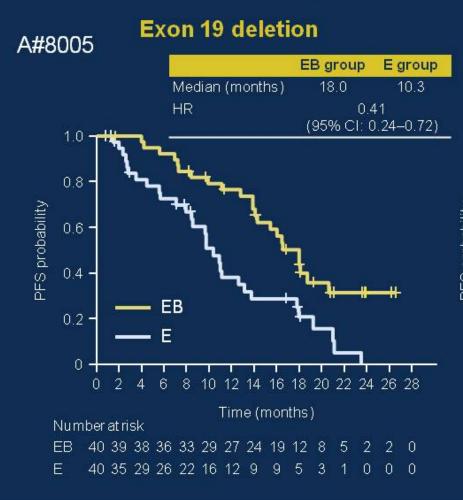
sex, smoking status, clinical stage, EGFR mutation type

Primary endpoint:

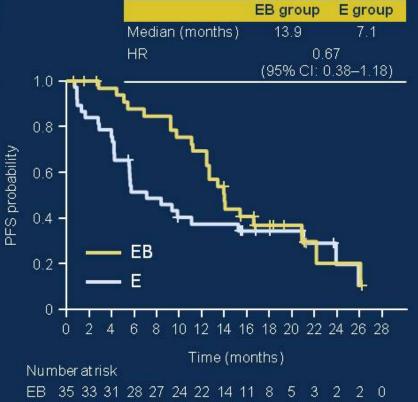
PFS (RECIST v1.1, independent review)

Secondary endpoints:

OS, tumor response, QoL, safety


Exploratory endpoint:

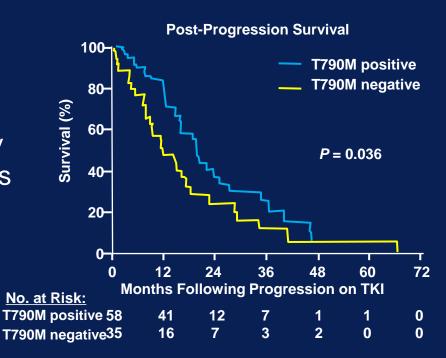
biomarker assessment


ASCC

Presented by: Terufumi Kato

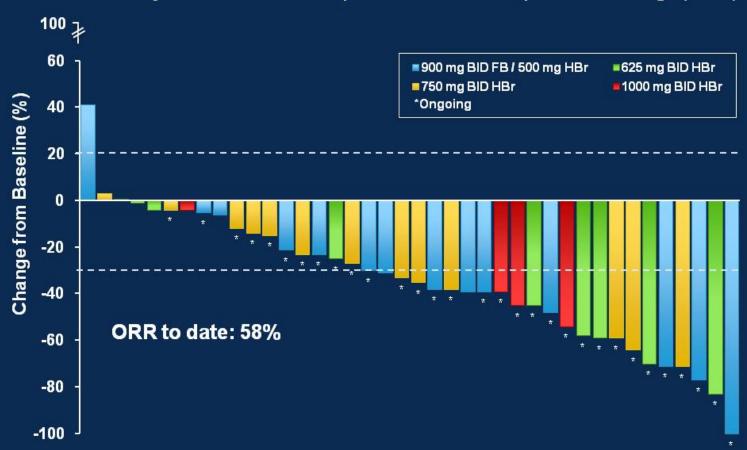
Kato: PFS by EGFR mutation type

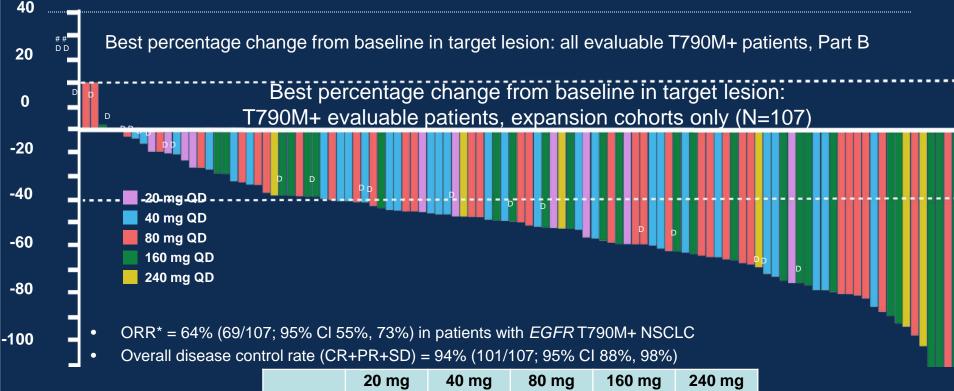
Exon 21 L858R


37 31 28 18 17 13 12 12 9 7 7 4

Courtesy of: Terufumi Kato

T790M in Acquired Resistance

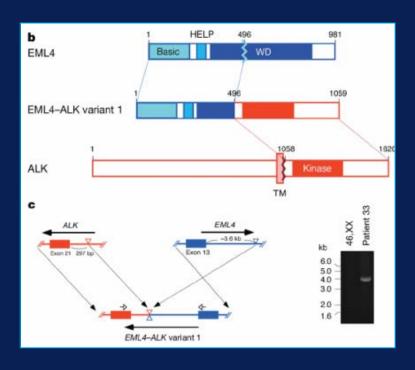

- Acquired exon 20 mutation found in >50% of patients with acquired resistance to EGFR TKI
- Increases relative affinity of mutant EGFR for ATP, may also cause steric hindrance to erlotinib
- More likely to show progression in lungs/pleura
- Less commonly detected in CNS
- Patients with T790M mutation may have better prognosis than patients without T790M


CO-1686

Best response in Phase 1 and early Phase 2 expansion cohort patients

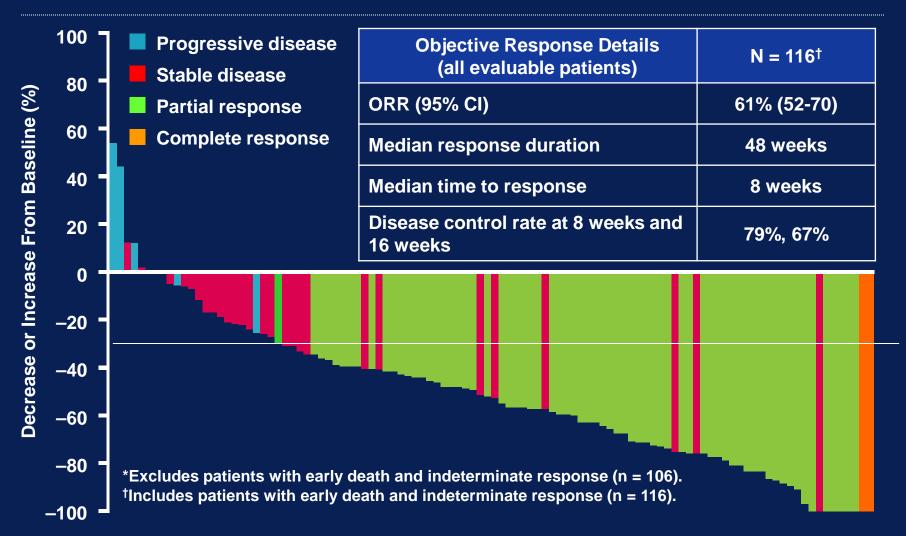
Centrally confirmed T790M+ patients within therapeutic dose range (N=40)

AZD9291: Response rate* in central T790M+


	20 mg	40 mg	80 mg	160 mg	240 mg
N (107)	10	29	34	28	6
ORR	50%	62%	68%	64%	83%

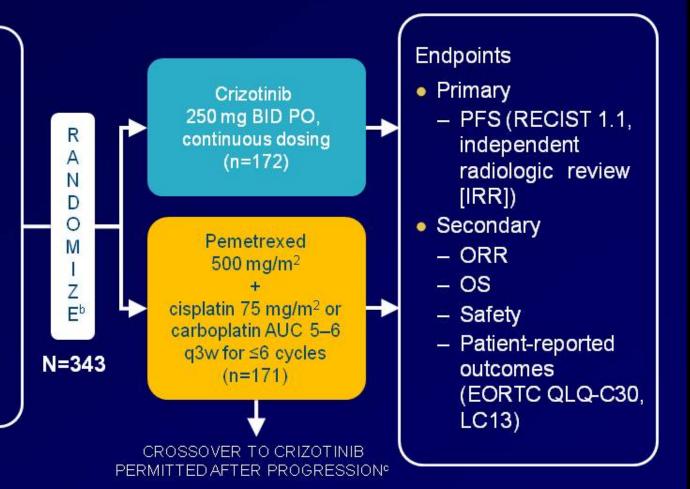
^{*}Includes confirmed responses and responses awaiting confirmation; # represents imputed values.

Population: all dosed central T790M+ patients with a baseline RECIST assessment and an evaluable response (CR/PR, SD or PD), N=107 (from 120 T790M+ patients, 13 patients with a current non-evaluable response are not included).


QD, once daily; central T790M+, T790M positive by central laboratory testing

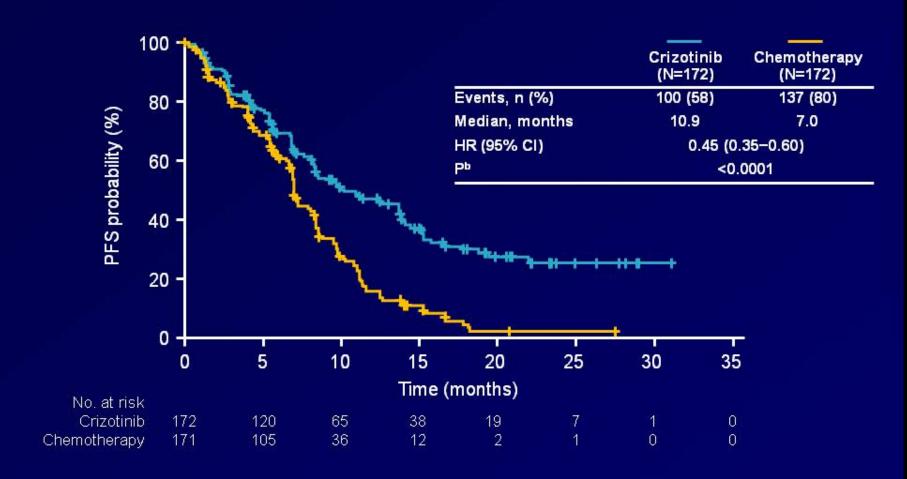
ALK Fusion Gene

- Potent oncogenic activity
- Present in approximately 4% to 5% of NSCLC
- More common in
 - Never smokers
 - Adenocarcinoma
 - Signet-ring morphology


Best Percent Change from Baseline in Target Lesions*

PROFILE 1014 Study Design

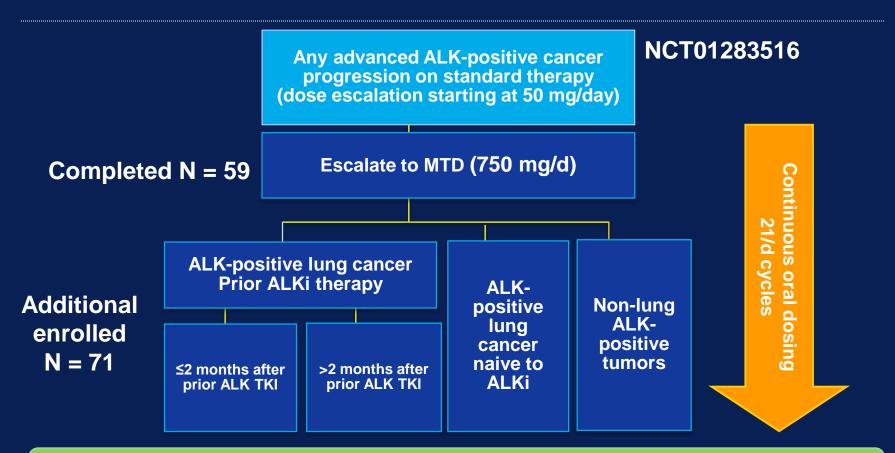
Key entry criteria


- ALK-positive by central FISH testing^a
- Locally advanced, recurrent, or metastatic non-squamous NSCLC
- No prior systemic treatment for advanced disease
- ECOG PS 0-2
- Measurable disease
- Stable treated brain metastases allowed

^aALK status determined using standard ALK break-apart FISH assay bStratification factors: ECOG PS (0/1 vs. 2), Asian vs. non-Asian race, and brain metastases (present vs. absent)

^cAssessed by IRR

Primary Endpoint Met: Crizotinib Superior to Pemetrexed-based Chemotherapy in Prolonging PFS^a


Ceritinib in Advanced Anaplastic Lymphoma Kinase Rearranged (ALK+) Non-small Cell Lung Cancer (NSCLC) – Results of the ASCEND-1 Trial (#8003)

Dong-Wan Kim, ¹ Ranee Mehra,² Daniel SW Tan,³ Enriqueta Felip,⁴
Laura QM Chow,⁵ D Ross Camidge,⁶ Johan Vansteenkiste,² Sunil Sharma,⁶
Tommaso De Pas,⁶ Gregory J Riely,¹⁰ Benjamin J Solomon,¹¹ Juergen Wolf,¹²
Michael Thomas,¹³ Martin Schuler,¹⁴ Geoffrey Liu,¹⁵ Armando Santoro,¹⁶
Margarida Geraldes,¹² Anthony L Boral,¹⁶ Alejandro Yovine,¹⁰ Alice T Shaw²⁰

¹Seoul National University Hospital, Seoul, Korea; ²Fox Chase Cancer Center, Philadelphia, PA; ³National Cancer Center, Singapore; ⁴Vall d'Hebron University, Barcelona, Spain; ⁵University of Washington, Seattle, WA; ⁵University of Colorado, Denver, CO; ⁻University Hospital KU Leuven, Leuven, Belgium; ³Huntsman Cancer Institute, Salt Lake City, UT; ³Instituto Europeo di Oncologia, Milan, Italy; ¹oMemorial Sloan-Kettering Cancer Center, New York, NY; ¹¹Peter MacCallum Cancer Center, Melbourne, VIC, Australia; ¹²University Hospital Cologne, Cologne, Germany; ¹³Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany; ¹⁴University Hospital Essen, University Duisburg-Essen, Essen, Germany and German Cancer Consortium, Heidelberg, Germany; ¹⁵Princess Margaret Cancer Center, Toronto, Canada; ¹⁶IRCCS Institute Clinico Humanitas, Milan, Italy; ¹¬Novartis Pharma, East Hanover, NJ; ¹⁶Novartis Institutes for BioMedical Research, Cambridge, MA; ¹⁶Novartis Pharma AG, Basel, Switzerland; ²oMassachusetts General Hospital, Boston MA

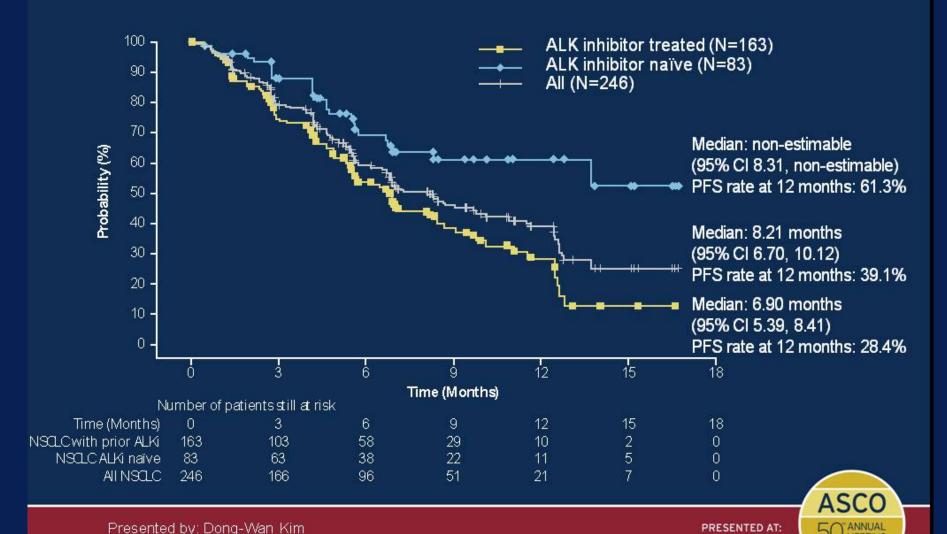
PRESENTED AT THE 2014 ASCO ANNUAL MEETING, PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

LDK 378: A Potent and Selective ALK Inhibitor

- Primary objective: Determination of MTD
- Secondary objectives: Safety, pharmacokinetics, and preliminary antitumor activity

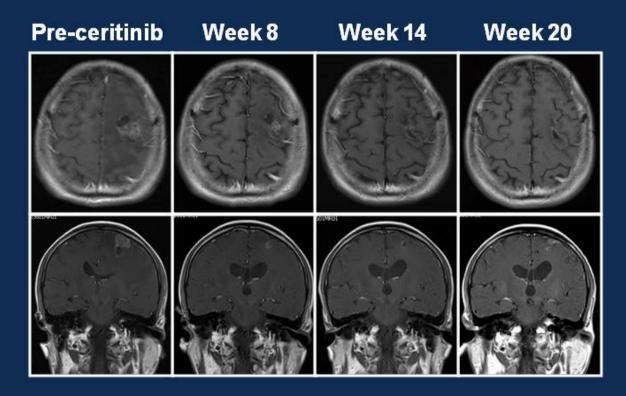
ALKi = ALK inhibitor; MTD = maximum tolerated dose. Shaw AT et al. ASCO 2013 Annual Meeting. Abstract 8010.

Best Percentage Change from Baseline (NSCLC)


*Patients with measurable disease at baseline and at least 1 post baseline assessment without unknown response for target lesion or overall response

Presented by: Dong-Wan Kim

PRESENTED AT:


ASCO

Progression-Free Survival in Patients with ALK+ NSCLC

Ceritinib Treatment Showed Anti-tumor Activity in the Brain

- 36 year old male patient with lymph node, brain, adrenal, and liver metastases
- Previously treated with radiation therapy, chemotherapy, and progressed on crizotinib

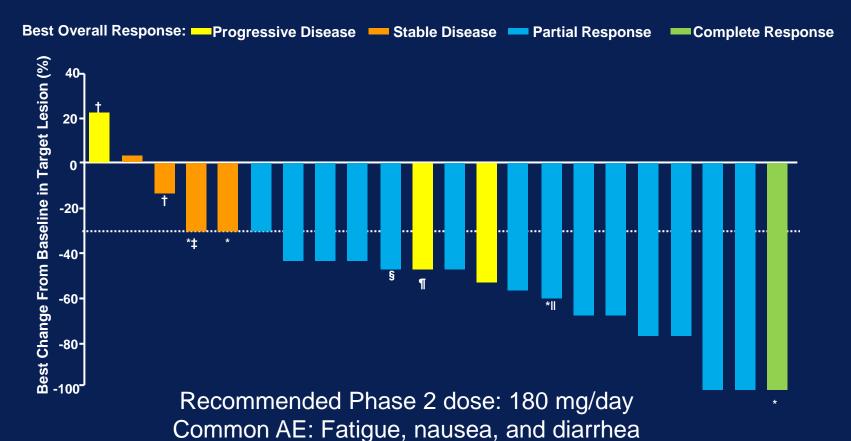
Patient remains on ceritinib 750 mg after 17 months

Figure courtesy of Dr Daniel Tan

Presented by: Dong-Wan Kim

PRESENTED AT:

Toxicity Challenges with Ceritinib


- Greater than with crizotinib
- Dose reduction 59% (!)
 - Increased ALT/AST, nausea, diarrhea, vomiting
- Discontinuation due to adverse effects 10%
 - Pneumonia, ILD/pneumonitis, decreased appetite

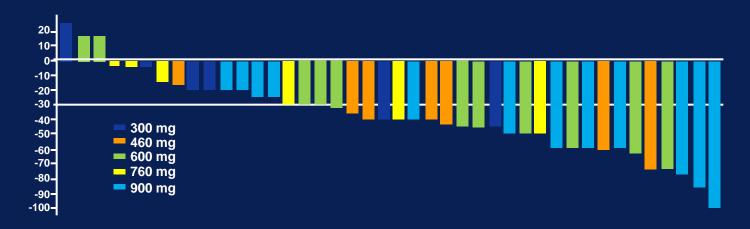
- Oncologists need to know to dose-reduce early
 - 750 mg daily may be more than needed

Kim, A#8003

ASCO
50 ANNUAL
SCIENCE & SOCIETY

AP26113: Preliminary Anti-Tumor Activity in ALK-Positive Patients

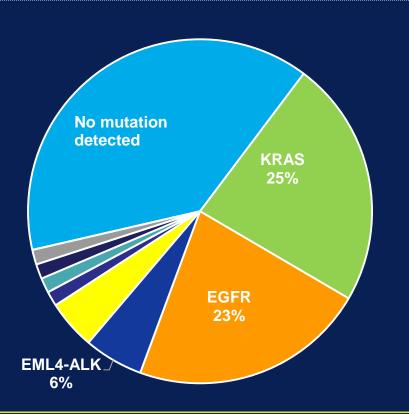
AE = adverse event


Data as of 17 April 2013. *ALK-TKI naive. †Received prior crizotinib and prior LDK378.

Non-NSCLC diagnoses: †neuroendocrine carcinoma; §inflammatory myofibroblastic tumor; "ACUP; "Patient was PD by RECIST 1.1 due to second primary tumor of melanoma.

Camidge DR et al. ASCO 2013 Annual Meeting. Abstract 8031.

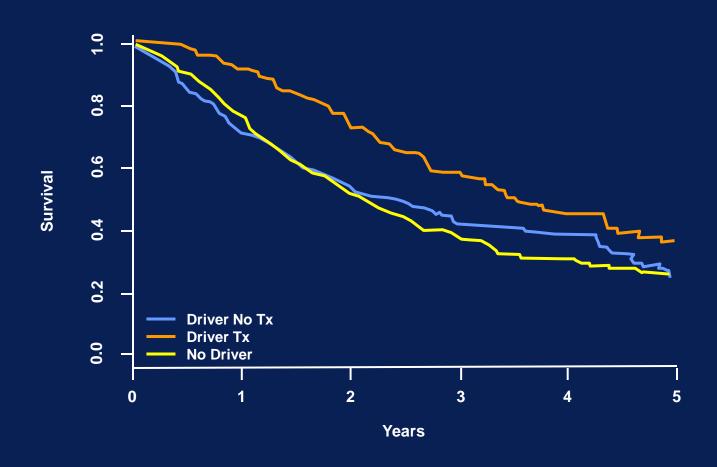
Alectinib in Crizotinib-Resistant ALK-Positive NSCLC


- N = 47 patients
- 70% received ≥2 prior regimens

Objective response rate 60%

Adverse events: Myalgia, fatigue, peripheral edema, elevated CPK, nausea, and photosensitivity (grades 1/2)

Lung Cancer Mutation Consortium: Incidence of Mutations Detected



Mutations	dotacted	in 60% of tu	mors tested
		III DU% OT TU	1111015 (45)(40)

EGFR	Erlotinib + OSI 906 (IGF1R) Erlotinib + MM 121 (HER3)
KRAS	Tivantinib + Erlotinib GSK1120212
MET Amplification	
EML4-ALK	Crizotinib
MEK1	GSK1120212
BRAF (V600E)	GSK2118434
BRAF (not V600E)	GSK1120212
HER2	Afatinib
PIK3CA	BKM120
AKT1	

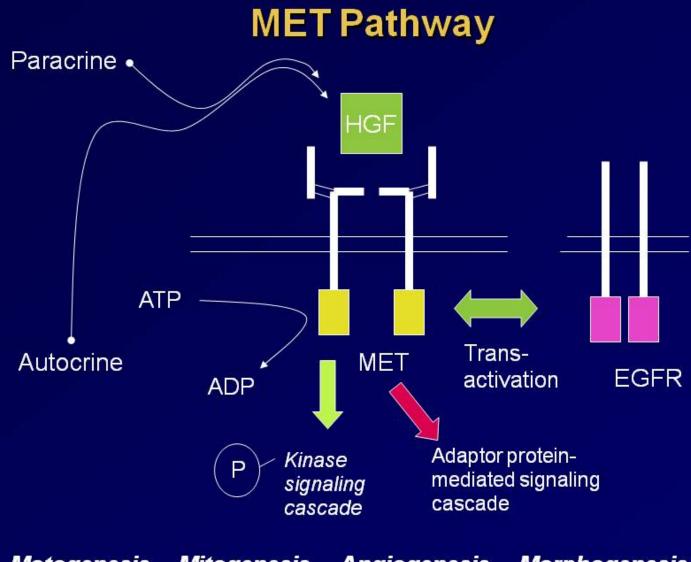
MET = membrane receptor essential for embryonic development and would healing; HER2 = human epidermal growth factor receptor 2; BRAF = human gene that makes a protein called "B-raf"; KRAS = a protein that stimulates signaling pathways downstream from EGFR Kris MG et al. *JAMA May*, 2014

Lung Cancer Mutation Consortium: Survival by Group

Crizotinib: selective inhibitor of ALK, MET and ROS

Upstate 102 kinase panel

Cellular selectivity on 10 of 13 relevant hits


13 'hits' <100X selective for Met

Kinase	IC50 (nM) mean*	Selectivity ratio	
Met	8	-	
ALK	40–60	5-8X	
ROS	55	7X	
RON	80	10X	
AvI	294	34X	
AxI	322	37X	
Tie2	448	52X	
Abl	1,159	166X	
IRK	2,887	334X	
Lck	2,741	283X	
Sky	>10,000	>1000X	
VEGFR2	>10,000	>1000X	
PDGFRβ	>10,000	>1000X	

High probability of ALK, MET and ROS inhibition at clinically relevant doses

*Measured using ELISA capture method

Bang Y, et al. J Clin Oncol 2010;28(suppl):18s (abstr 3) http://meetinglibrary.asco.org/content/41375?media=vm

Motogenesis Mitogenesis Angiogenesis Morphogenesis

Patient eligibility: NSCLC *MET* amplification cohort

- Patients (≥18 years) had histologically confirmed advanced NSCLC, and
 - measurable disease per RECIST v1.0
 - adequate organ function

ratio < 1.8

- resolution of acute toxic effects of prior therapies or surgical procedures (CTCAE Grade ≤1)
- received no prior MET- or HGF-targeted therapies

In archival tumor tissue, MET amplification was determined by FISH

MET not amplified (not eligible)

MET amplified (intermediate MET level)

MET amplified (intermediate MET level)

MET/CEP7

ratio > 2.2-<5.0

MET/CEP7 ratio

≥5

CEP7, chromosome 7 centromere signal; CTCAE, Common Toxicity Criteria for Adverse Events FISH, fluorescence in-situ hybridization; RECIST, Response Evaluation Criteria In Solid Tumors

MET/CEP7

ratio ≥1.8-≤2.2

Objective response ratea

	Low <i>MET</i> , n=2	Intermediate <i>MET</i> , n=6	High <i>MET</i> , n=6
ORR, % (95% CI) ^b	0 (0–84)	17 (0–64)	67 (22–96)
Best response, n (%) Complete response Partial response Stable disease Objective progression	0 0 0 2 (100)	0 1 (17) 4 (67) 1 (17)	1 (17) 3 (50) 1 (17) 1 (17)
Median duration of response, weeks (range) ^c	= 1	16	73.6 (24.1–128.0)
Duration of stable disease, n (%) ^d 0–<3 months 3–<6 months	-	3 (75) 1 (25)	0 1 (100)

^{*}RECIST v1.0, based on investigator assessment.

ORR, objective response rate.

bComplete response + partial response; CI based on exact F distribution.

[°]Descriptive statistics are presented based on all responders

^dAmong patients with stable disease as best overall response.

Clinical Development of PD-1 Immune Checkpoint Inhibitors

Target	Antibody	Molecule	Development stage
PD-1	Nivolumab- BMS-936558	Fully human IgG4	Phase III
	Pidilizumab CT-011	Humanized IgG1	Phase II multiple tumors
	Pembrolizumab MK-3475	Humanized IgG4	Phase III
PD-L1	BMS-936559 (no longer in development in NSCLC)	Fully human IgG4	Phase I
	MedI-4736	Engineered human IgG1	Phase I
	MPDL-3280A	Engineered human IgG1	Phase III
	MSB0010718C	Human IgG1	Phase I

MK-3475 in First Line Treatment of NSCLC: Initial Signal of Activity from Phase I Trial

- MK-3475: humanized, high affinity, monoclonal IgG4 antibody that exerts dual ligand blockade of the PD-1 pathway
- KEYNOTE-001: ongoing phase I study including patients with advanced NSCLC
- Key First Line Eligibility Criteria
 - EGFR Wild Type and Negative for ALK rearrangement (first 11 could have had)
 - 1% Tumor PD-L1 expression determined centrally from fresh biopsy using prototype IHC assay (22C3 antibody)
- Randomized to 10 mg/kg IV q 2 wks or q 3 wks
- Assessment q 9 weeks using RECIST 1.1 and irRC

Abstract # 8007 – Rizvi N et al, Safety and clinical activity of MK-3475 as initial therapy in patients with advanced non-small cell lung cancer (NSCLC).

PRESENTED AT:

Antitumor Activity by MK-3475 Dose

	R	RECIST v1.1, Central Review ^a			irRC, Investigator Review			
		ORR ^b	DCR ^b		ORR ^b	DCR ^b		
MK-3475 Dose	n	n (%) [95% CI]	n (%) [95% CI]	n	n (%) [95% CI]	n (%) [95% CI]		
Total	42	11 (26%) [14%-42%]	27 (64%) [48%–78%]	45	21 (47%) [32%-62%]	35 (78%) [63%-89%]		

- Interim median PFS:
 - 27.0 weeks (95% CI, 13.6-45.0) by RECIST v1.1 per central review 6.75 mo
 - 37.0 weeks (95% Cl, 27.0-NR) by irRC per investigator review 9.25 mo
- Comparing to classic chemotherapy in the first line setting
- Phase 3 studies
 - Gemcitabine + Cisplatin RR= 22-32%, Median PFS 5.1 mo
 - Taxol + Carboplatin RR=15-25%, Median PFS 4.5 mo.
 - Pemetrexed + Cisplatin RR=30%, Median PFS 4.8 mo. (5.3 mo Nonsquam)

Scagliotti G et al JCO 2002, Schiller J et al NEJM 2002, Sandler A et al NEJM 2006, Scagliotti G et al JCO 2009

PRESENTED AT:

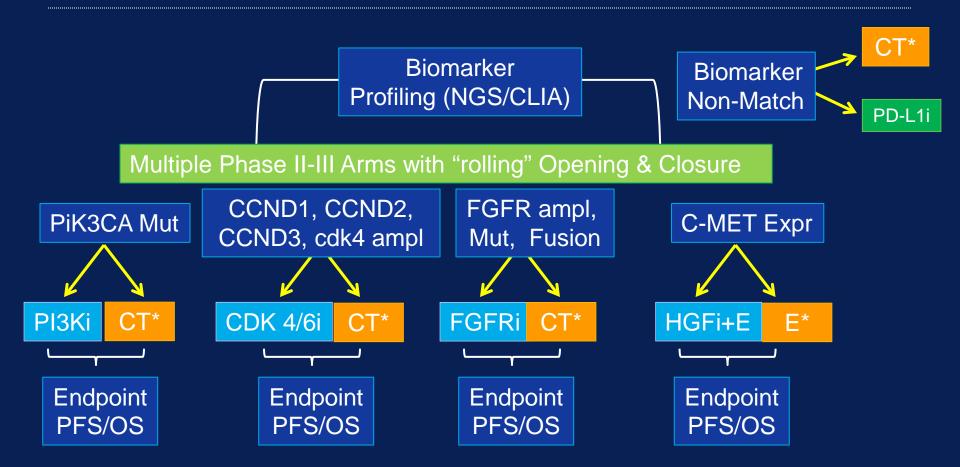
Presented by: Julie R Brahmer, M.D., M.Sc.

ASCO Perspective: Raising the Bar for Clinical Trials by Defining Clinically Meaningful Outcomes

Table 1. Summary of	Recommended Targets for Meaningful Clinical Trial Goals	
	Primary End Point	


			Primary End Point	Secondary End Point		
Cancer Type	Patient Population	Current Baseline Median OS (months)	Improvement Over Current OS That Would Be Clinically Meaningful (months)	Target HRs	Improvement in 1-Year Survival Rate (%)*	Improvement in PFS (months)
Pancreatic cancer	FOLFIRINOX-eligible patients	10 to 11 ¹⁹	4 to 5	0.67 to 0.69	48 → 63	4 to 5
Pancreatic cancer	Gemcitabine or gemcitabine/nab-paclitaxel- eligible patients	8 to 9 ^{20,21}	3 to 4	0.6 to 0.75	35 → 50	3 to 4
Lung cancer	Nonsquamous cell carcinoma	1322	3.25 to 4	0.76 to 0.8	53 → 61	4
Lung cancer	Squamous cell carcinoma	10 ²³	2.5 to 3	0.77 to 0.8	44 → 53	3
Breast cancer	Metastatic triple negative, previously untreated for metastatic disease	18****	4.5 to 6	0.75 to 0.8	63 → 71	4
Colon cancer	Disease progression with all prior therapies (or not a candidate for standard second- or third-line options)	4 to 6 ²⁶	3 to 5	0.67 to 0.67	25 → 35	3 to 5

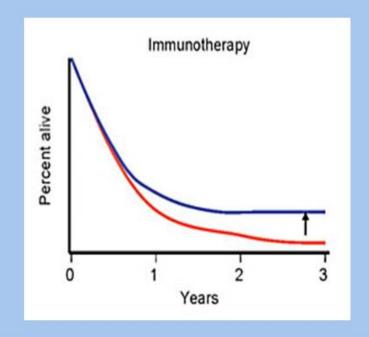
Abbreviations: FOLFIRINOX, leucovorin, fluorouracil, irinotecan, and oxaliplatin; HR, hazard ratio; OS, overall survival; PFS, progression-free survival. *Current → target.


Ellis LM et al JCO 2012

Presented by: Julie R. Brahmer, M.D., M.Sc.

PRESENTED AT:

S1400: MASTER LUNG-1: Squamous Lung Cancer- 2nd Line Therapy


CT = chemotherapy (docetaxel or gemcitabine), E = erlotinib

PI: V. Papadimitrakopoulou (SWOG); Steering Committee Chair: R. Herbst (YALE, SWOG); Lung Committee Chair: D. Gandara; Translational Chair: F. Hirsch; Statistical Chair: M. Redman

Decision Tree for the Management of Advanced NSCLC- Utilization of Contemporary Tools

- Personalization of Care by histology (pemetrexed and bevacizumab) for nonsquamous
- Molecular markers
 - ERCC1 etc. not helpful
 - 1st line EGFR and ALK testing critical
- Maintenance therapy
 - Switch or continuation pem or erlotinib
- EGFR and ALK 1st, 2nd, 3rd generation drugs on the market or in development

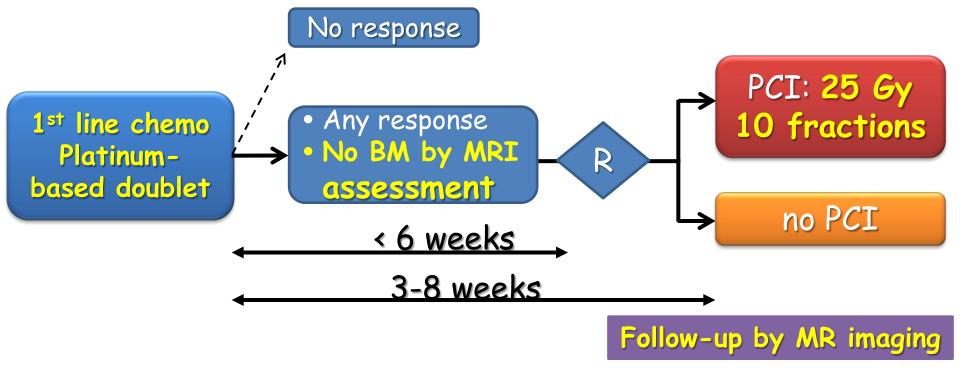
ASCO Perspective: Raising the Bar But Will These Criteria Take into Account Raising the Tail of the Curve which is where the Power of Immunotherapy Theoretically Lies?

Ellis LM et al JCO 2012

Presented by: Julie R. Brahmer, M.D., M.Sc.

PRESENTED AT:

PCI for SCLC: Current Role


Well Established Role in LD-SCLC Pts with Response

 EORTC Trial (NEJM 2007) Established PCI as Alternative for ED-SCLC Patients: Survival Benefit!

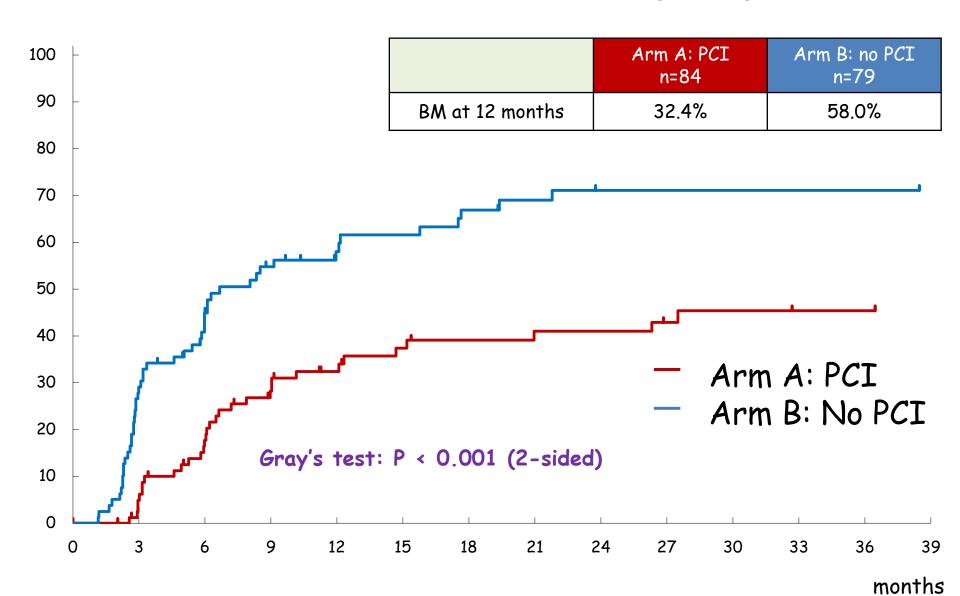
New Toxicity-Mitigating Approaches Under Study

How do these two trials compare?

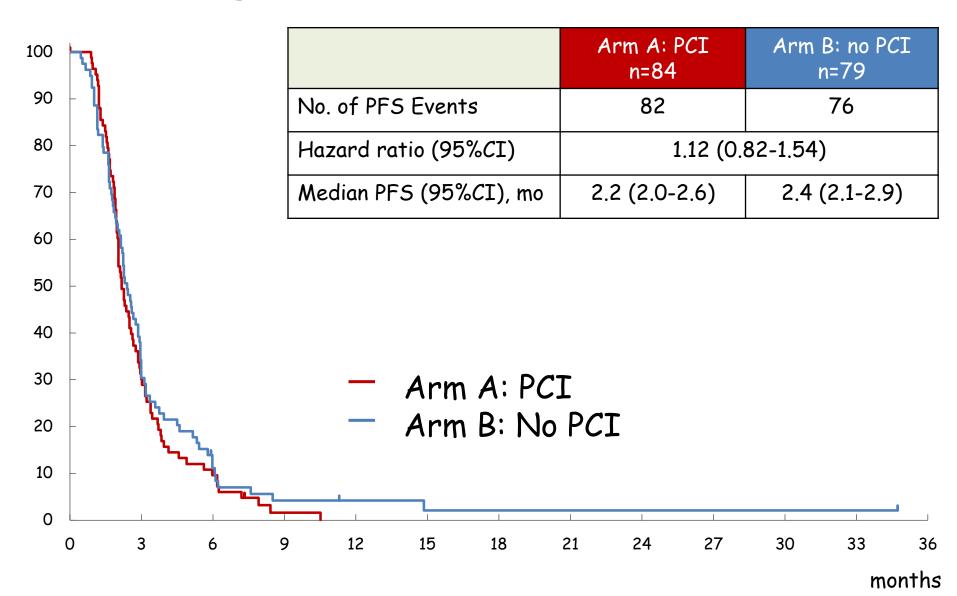
Seto et al: Phase III PCI Trial

Stratification by Age ($70 \le / < 70$), PS (0-1 / 2), Response (CR / PR+MR), Institutions

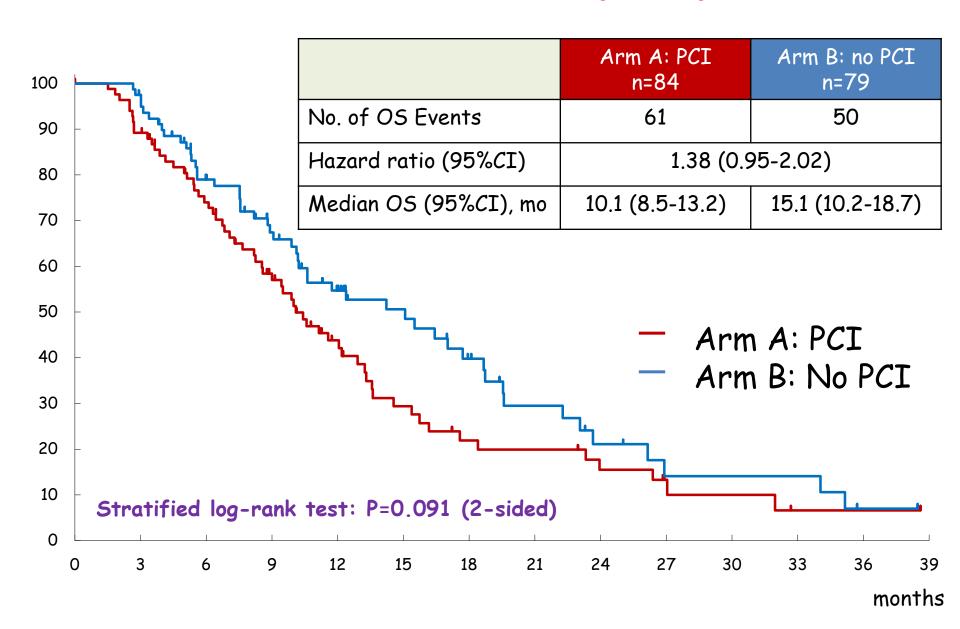
Primary endpoint: Overall Survival


Secondary endpoints: Time to BM (evaluated every 3 months)

Progression-Free Survival (PFS)


Safety

Mini Mental State Examination (MMSE)


Time to Brain Metastasis (Seto)

Progression-Free Survival (Seto)

Overall Survival (Seto)

EORTC vs Japanese PCI Trials

	EORTC (Slotman)	Japan (Seto)
# Patients	286 Enrolled	224 of 330 Enrolled
PCI Dose/Fx	Variable	25 Gy/10 Fractions
Pre-Enrollment Neuro-Imaging	Not Required	MR Brain Required
Follow-up Imaging	Not Required	MR Brain Required
Neuro Function Data	Limited	Limited

Educational Objectives

- New roles for targeted therapies for early stage disease?
- Consolidation chemotherapy's last stand in Stage III NSCC?
- Current treatment algorithms for patients with NSCLC with known and unknown driver mutations
- Selecting treatment in patients without an actionable mutation
- Defining the role of prophylactic cranial radiation in small cell lung cancer