Best of ASCO Breast Cancer Update

Georgia Society of Clinical Oncology September 6, 2014

Amelia B. Zelnak, M.D., M.Sc. Assistant Professor of Hematology and Medical Oncology Winship Cancer Institute Emory University School of Medicine Randomized Comparison of Adjuvant Aromatase Inhibitor Exemestane plus Ovarian Function Suppression vs Tamoxifen plus Ovarian Function Suppression in Premenopausal Women with Hormone Receptor Positive Early Breast Cancer: Joint Analysis of IBCSG TEXT and SOFT

> Olivia Pagani, MD on behalf of the TEXT and SOFT Investigators and International Breast Cancer Study Group (IBCSG)

TEXT and SOFT Designs

Eligibility

- Premenopausal women with HR+ (ER and/or PgR≥10%) invasive breast cancer confined to breast +/- axillary nodes
- Proper local-regional treatment with no residual disease
- Randomized within 12 weeks of surgery for all women in **TEXT** and women in **SOFT** who did not receive chemotherapy
- Women in SOFT who received prior (neo)adjuvant chemotherapy randomized ≤8 months of chemotherapy completion when premenopausal status demonstrated
 - These patients were permitted to receive oral endocrine therapy prior to randomization

Treatments

Protocol treatment was for 5 years from randomization

Ovarian Function Suppression TEXT

- All women started with GnRH agonist triptorelin (IM q28d)
- Triptorelin initiated concurrently with chemotherapy, if it was given
- Bilateral oophorectomy or irradiation as alternatives to triptorelin after 6 months SOFT
 - Choice of OFS method

Oral endocrine therapy

- Exemestane 25 mg daily, or
- Tamoxifen 20 mg daily
- In TEXT started 6 to 8 weeks after initiation of OFS, or after chemotherapy if given

Endpoints

Primary

Disease-free survival (DFS)

- Invasive recurrence (local, regional, distant)
- Invasive contralateral breast cancer
- Second (non-breast) invasive malignancy
- Death without prior cancer event

<u>Secondary</u>

Breast cancer-free interval (BCFI)

- Invasive recurrence or contralateral breast cancer
- Distant recurrence-free interval (DRFI)
 - Distant recurrence
- Overall survival (OS)
 - Death from any cause

Characteristics

	No chemo TEXT (N=1053)	No chemo SOFT (N=943)	Chemo TEXT (N=1607)	Prior chemo SOFT (N=1087)	Overall (N=4690)
Age <40 yr	16%	9%	30%	49%	27%
LN +	21%	8%	66%	57%	42%
T-size >2cm	19%	15%	53%	47%	36%
HER2 +	5%	3%	17%	19%	12%
Surgery to random. (median)	1.5 mo	1.8 mo	1.2 mo	8.0 mo	1.6 mo
					ASCO

50° ANNUAL MEETING

Exemestane+OFS Improved DFS

5.7 years median follow-up

Exemestane+OFS Reduced Recurrence

4% absolute improvement in 5-yr freedom from breast cancer for exemestane+OFS

• No significant difference in overall survival

Women Who Did Not Receive Chemotherapy

Some women have excellent prognosis with highly-effective endocrine therapy alone >97% breast cancer-free at 5 years when treated with exemestane+OFS

Women Who Received Chemotherapy

Absolute improvement with exemestane+OFS

5-yr freedom from breast cancer: 5.5% in TEXT and 3.9% in SOFT

5-yr freedom from distant recurrence: 2.6% in TEXT and 3.4% in SOFT

Selected Adverse Events

	Exemestane+OFS (N=2318)		Tamoxif (N=2	en+OFS 325)
CTCAE v3.0	Grade 1-4	Grade 3-4	Grade 1-4	Grade 3-4
Depression	50%	3.8%	50%	4.4%
Musculoskeletal	89%	11%	76%	5.2%
Osteoporosis (% T< -2.5)	39% (13%)	0.4%	25% (6%)	0.3%
Fracture	6.8%	1.3%	5.2%	0.8%
Hypertension	23%	6.5%	22%	7.3%
Cardiac ischemia/infarction	0.7%	0.3%	0.3%	0.1%
Thrombosis/embolis m	1.0%	0.8%	2.2%	1.9%
CNS ischemia	0.7%	0.3%	0.3%	0.1%
CNS bleeding	0.6%	<0.1%	0.9%	0.1%
	000/	4.00/	000/	4.00/
Hot flushes/flashes	92%	10%	93%	12%
Sweating	55%		59%	
Vaginal dryness	52%		47%	
Libido decrease	45%		41%	
Dyspareunia	31%	2.3%	26%	1.4%

Presented by: Olivia Pagani, MD

Conclusions: SOFT/TEXT

- Exemestane plus ovarian suppression had improved DFS compared to tamoxifen and is a reasonable option
- No difference in overall survival; longer follow-up is needed
- Results of tamoxifen alone arm not yet available
- Early cessation rate higher in exemestane arm
 - (16% vs 11%)
 - Side effect profile comparable to Als in postmenopausal women
- Multiple unanswered questions:
 - Low risk patients: do short and long-term risks outweigh benefit?
 - Chemo-induced menopause: should we commit to 5 years of ovarian suppression or wait to switch to AI after confirming postmenopausal status
 - ABCSG12: similar trial (N=1803) of ovarian suppression with anastrozole versus tamoxifen did not show DFS advantage

Randomized phase II study of weekly paclitaxel with and without carboplatin followed by cyclophosphamide / epirubicin / 5fluorouracil as neoadjuvant chemotherapy for stage II/IIIA breast cancer.

Kenji Tamura, Jun Hashimoto, Hitoshi Tsuda, Masayuki Yoshida, Hideko Yamauchi, Kenjiro Aogi, Satoru Shimizu, Hiroji Iwata, Norikazu Masuda, Naohito Yamamoto, Kenichi Inoue, Shinji Ohno, Katsumasa Kuroi, Tamie Sukigara, Yasuhiro Fujiwara[,] Masashi Andoh

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Protocol Design

pCR rates by sub groups

Odds rates / Subgroup Analysis

Subgroup

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Adverse Events

Treatment arm	CP-CEF			P-CEF				
	All		CP phase		All		P phase	
Adverse events	G3%	G4%	G3%	G4%	G3%	G4%	G3%	G4%
Anemia	18.2	1.1	14.8	1.1	1.1	0	0	0
Neutropenia	46.6	19.3	52.3	5.7	17.6	20.9	8.8	1.1
Thrombocytopenia	1.1	0	1.1	0	0	0	0	0
Febrile neutropenia	20.5	0	2.3	0	15.4	0	0	0
Nausea	3.4	0	2.3	0	2.2	0	0	0
Vomiting	2.3	0	1.1	0	0	0	0	0
Fatigue	2.3	0	2.3	0	1.1	0	0	0
Infection	4.4	0	2.2	0	1.1	0	0	0
Sensory neuropathy	1.1	0	1.1	0	1.1	0	1.1	0

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Pathological complete response (pCR) rates after carboplatin-containing neoadjuvant chemotherapy in patients with germline BRCA (gBRCA) mutation and triple negative breast cancer (TNBC) – Results from GeparSixto

Gunter von Minckwitz, Eric Hahnen, Peter A. Fasching, Jan Hauke, Andreas Schneeweiss, Christoph T. Salat, Mahdi Rezai, Jens U. Blohmer, Dirk M. Zahm, Christian Jackisch, Bernd Gerber, Peter Klare, Sherko Kümmel, Holger Eidtmann, Stephan Paepke, Valentina Nekljudova, Sibylle Loibl, Michael Untch, Rita Schmutzler for the GBG/AGO-B study groups

Presented at the 2014 ASCO Annual Meeting. Presented data is the property of GBG and AGO-B.

GROUP

Main Study Design

von Minckwitz et al. Lancet Oncology, May 2014

Presented at the 2014 ASCO Annual Meeting by Gunter von Minckwitz, M.D.. Presented data is the property of GBG and AGO-B.

Therapy in TNBC subgroup

ASCO 50° ANNUAL SCIENCE & SOCIETY

Presented at the 2014 ASCO Annual Meeting by Gunter von Minckwitz, M.D.. Presented data is the property of GBG and AGO-B. GBG

GERMAN

BREAST

pCR Rates (ypT0 ypN0)

von Minckwitz et al. Lancet Oncology, May 2014

Presented at the 2014 ASCO Annual Meeting by Gunter von Minckwitz, M.D.. Presented data is the property of GBG and AGO-B. GBG GERMAN BREAST GROUP

Characteristics of patients with TNBC

SIXTO		PM	PMCb
		(N=146)	(N=148)
Age (median; yrs)		47.0	47.5
Tumor size (median; cm)		3.0	3.0
		%	%
cT 3 / 4		13.7	8.1
cN +		45.1	40.6
Grade 3		77.4	72.3
Family history for BC/OC*	(N=101)	34.9	33.8
gBRCA 1 alteration	(N= 35)	13.0	10.8
gBRCA 2 alteration	(N= 6)	1.4 -15.8	2.7 -14.2
gRAD50/51C alteration	(N= 3)	1.4	0.7

*assessed by a checklist of the German BRCA consortium to identify women at risk for germline alterations of >10%

Presented at the 2014 ASCO Annual Meeting by Gunter von Minckwitz, M.D.. Presented data is the property of GBG and AGO-B.

pCR (ypT0/is ypN0) in all Patients with TNBC

gBRCA/RAD alteration

S		NO (N=250)	yes (N=44)
mily	NO	43.9%	45.5%
or BC/C	(N=193)	(75/171)	(10/22)
Fa	yes	49.4%	81.8%
history f	(N=101)	(39/79)	(18/22)

Presented at the 2014 ASCO Annual Meeting by Gunter von Minckwitz, M.D.. Presented data is the property of GBG and AGO-B.

Expression of immune genes in triple-negative and HER2-positive breast cancer in the neoadjuvant GEPARSIXTO trial: Prediction of response to carboplatinbased chemotherapy

Carsten Denkert, Gunter von Minckwitz, Jan C. Brase, Silvia Darb-Esfahani, Stephan Gade, Ralf Kronenwett, Christoph Salat, Sherene Loi, Christian Schem, Christos Sotiriou, Keyur Mehta, Peter Klare, Karin Fisch, Jens-Uwe Blohmer, Hans Tesch, Sherko Kümmel, Kristin Krappmann, Manfred Dietel, Michael Untch, Sibylle Loibl

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Background: Tumor-infiltrating lymphocytes are linked to chemotherapy response and prognosis in breast cancer

Lymphocyte-predominant breast cancer (LPBC) = more that 60% TILs

non-LPBC

GBG

GERMAN

Presented by: Carsten Denkert

Background – Tumor-infiltrating lymphocytes (TILs)

Further molecular characterization of immune infiltrate

morphological classification

Lymphocyte-predominant breast cancer (LPBC) = more that 60% TILs

non-LPBC

molecular characterization Hypothesis:

> Immunosuppressive regulators: PD1, PDL1, CTLA4, IDO1, FOXP3

Immune activation: T-Cells: CD8A, CCL5 B-Cells: IGKC, CD21, CD80

Chemoattractants: CXCL9, CXCL13

Methods

- Are mRNA markers better than TILs for diagnostic approaches?
- n=481 FFPE core biopsies from GeparSixto
- 12 immunologically relevant mRNAs
 - measured by quantitative RT-PCR
 - CXCL9, CCL5, CD8A, CD80, CXCL13, IGKC, CD21, ID01, PD-1, PDL1, CTLA4, FOXP3
- evaluation of TILs based on H&E morphology (Denkert et al, SABCS 2013; Denkert et al, JCO, 2010)

Three different immune subtypes: correlation with response rate

Immune markers were significantly linked to increased pCR rates – all cases (n=481) univariate multivariate interacti. w. CbTx

Stromal TILs: OR per 10% change, mRNA markers: OR per 1 dCt value (I≈ doubling of mRNA)

Presented by: Carsten Denkert

Immune markers were significantly linked to increased pCR rates – all cases (n=481)

Presented by: Carsten Denkert

Conclusion - Immune-regulatory checkpoint markers

- Expression of PD1, PDL1, CTLA4, IDO1 and FOXP3 cannot be used to monitor <u>anti</u>-immune activity (because these markers are <u>positively</u> correlated with other immune mRNA markers and with therapy response).
- These markers are expressed in parallel to the pro-immune markers, suggesting a feedback activation of immuno-suppressive pathways in parallel to the immune reaction.

PRESENTED AT:

G B G

Immune markers in different subtypes TNBC (n=255)

Presented by: Carsten Denkert

PRESENTED AT:

ASCO

50 MEETING

HER2+ BC (n=226)

Comparison of immune mRNAs and TILs for response prediction

	all cases	TNBC	HER2+
	p-value for immune mRNA	p-value for immune mRNA	p-value for immune mRNA
CCL5	0.04		
CXCL9			
CXCL13			
CD8A			
PD1	0.09		
PDL1	0.005	0.04	0.06
CTLA4			
FOXP3			
IDO1	0.05	0.08	
IGKC			
CD80	0.07	0.005	
CD21			

- Exploratory multivariate analysis including TILs, mRNA markers and clinical markers:
- TILs are significant in all analyses
- immune mRNAs are only significant in selected analyses

 TILs contain similar information as immune mRNAs

Conclusions: Neoadjuvant Carboplatin

- Addition of carboplatin to weekly paclitaxel or to pegylated doxorubicin/paclitaxel improved pathologic complete response among triple negative breast cancer patients
- Similar to findings from CALGB 40603 in triple negative breast cancer
- Optimal dosing of carboplatin is unclear
- In GEPARSIXTO, increase of pCR rate with carboplatin was highest in patients with family history and alterations of gBRCA/RAD
- Assessment of tumor-infiltrating lymphocytes and other immune markers have been linked to improved response to neoadjuvant therapy

Abstract 1019: Cisplatin with or without PARP inhibitor, rucaparib, after preoperative chemotherapy in patients with triple-negative breast cancer (TNBC): Hoosier Cancer Research Network BRE09-146

> Sujaata Dwadasi, Yan Tong, Tom Walsh, Michael A. Danso, Cynthia X. Ma, Paula Silverman, Mary-Claire King, Susan M. Perkins, Sunil S. Badve, Kathy Miller

Eligibility Criteria

- Histologically or cytologically confirmed triple negative invasive breast cancer, stage I-III at diagnosis
 - Patients with ER+ and/or PR+ allowed ONLY if they are known carriers of a deleterious mutation in BRCA1 or BRCA2.
- Completed neoadjuvant chemotherapy with an anthracycline and/or a taxane.
 - No prior cisplatin. Prior carboplatin allowed.
- Completed definitive resection of primary tumor with substantial residual disease based one of the following
 - Miller-Payne class 0-2⁴
 - Residual Disease Burden (RCB) classification II or III⁵
 - Residual lymph node (N1-N3) involvement
 - Residual 2 cm invasive disease in the breast
- Radiation therapy completed if indicated.

Study Schema

Cisplatin 75 mg/m² D1 Rucaparib (combined therapy) RP2 - 24 mg IV D1,2,3 cycle 1, escalate to 30 mg C2-4 Rucaparib monotherapy 30 mg IV or 100 mg po weekly x 24 weeks

Patient Characteristics	Cisplatin (n = 65)	Cisplatin + Rucaparib (n = 63)			
Median age	48 (27-69)	47 (21-75)			
African American	20%	17.5%			
Known BRCA1 or 2 mutation at entry	BRCA 1 – 1 BRCA 2 - 2	BRCA 1 – 1 BRCA 2 - 2			
Deleterious BRCA mutation by BROCA analysis*	21.5%	12.7%			
Neoadjuvant Chemo Anthracycline Taxane Carboplatin	66% 92% 0	48% 89% 9.5%			
Radiation Therapy	86%	86%			
Median residual tumor	1.9 cm (0-9)	1.9 cm (0-11.5)			
Median residual LN+	1 (0-15)	1 (0-38)			
Median Residual Cancer Burden	2.6 (0-5.0) (n=53)	2.7 (0-5.3) (n=59)			

*BROCA analysis available in 101 patients

1 YEAR DISEASE FREE SURVIVAL

	Cisplatin	Cisplatin + Rucaparib
All patients (ITT)	82.7%	82.5%
Deleterious BRCA mutation by BROCA analysis	84.6%	100%

Adjuvant Lapatinib and/or Trastuzumab Treatment Optimisation Trial

First results from the phase III ALTTO trial (BIG 02-06; NCCTG 063D) comparing one year of anti-HER2 therapy with lapatinib alone (L), trastuzumab alone (T), their sequence (T→L) or their combination (L + T) in the adjuvant treatment of HER2-positive early breast cancer (EBC)

Martine Piccart-Gebhart, Andrew P. Holmes, José Baselga, Evandro de Azambuja, Amylou Dueck, Giuseppe Viale, Jo Anne Zujewski, Aron Goldhirsch, Sergio Santillana, Kathleen Pritchard, Antonio C. Wolff, Christian Jackisch, Istvan Lang, Michael Untch, Ian Smith, Frances Boyle, Binghe Xu, Henry Gomez, Richard D. Gelber and Edith A. Perez

On behalf of the ALTTO Study Team

DESIGN 1: SEQUENTIAL ANTI-HER2 THERAPY AFTER ALL CHEMOTHERAPY (N= 4,613)

DESIGN 2: CONCURRENT ANTI-HER2 THERAPY AFTER ANTHRACYCLINE-BASED CHEMOTHERAPY (N= 3,337)

DESIGN 2B: CONCURRENT ANTI-HER2 THERAPY WITH A NON-ANTHRACYCLINE CHEMOTHERAPY (N= 431)

PRIMARY ENDPOINT

Disease-free survival (DFS) event: first occurrence of 1) **invasive breast cancer recurrence** at any site, 2) a **second primary cancer** (invasive contralateral breast cancer or non-breast malignancy, or 3) **death from any cause** as first event.

SECONDARY ENDPOINTS

- Overall survival (OS)
- Time to recurrence (TTR)
- Time to distant recurrence (TTDR)
- Cumulative incidence of brain metastases
- Safety in general
- Cardiac safety
- Presence or absence of cMYC gene amplification
- Expression levels of PTEN
- Presence or absence of p95 HER2 domain

CURRENT ANALYSIS PLAN

Statistical procedures for the two remaining pairwise comparisons are:

Comparison	Assumptions
L + T vs. T	Test superiority in ITT population at alpha = 0.025
T→ L vs. T	Test non-inferiority in per protocol population (PPP) at alpha = 0.025

DISTRIBUTION OF THE STRATIFICATION FACTORS BY TREATMENT ARM

	L+T	$T \rightarrow L$	Т
	(N = 2,093)	(N = 2,091)	(N = 2,097)
Hormone Receptor Status			
Positive	1,203 (57%)	1,205 (58%)	1,200 (57%)
Negative	890 (43%)	886 (42%)	897 (43%)
Timing of chemotherapy			
Sequential (Design 1)	1,155 (55%)	1,143 (55%)	1,147 (55%)
Concurrent (Design 2 and 2B)	938 (45%)	948 (45%)	950 (45%)
Lymph Node Status			
Not applicable (neoadjuvant	160 (00/)	170 (00/)	191 (00/)
chemotherapy)	100 (0%)	170 (8%)	181 (9%)
Node negative	845 (40%)	842 (40%)	844 (40%)
1-3 positive nodes	617 (29%)	617 (30%)	603 (29%)
>=4 positive nodes	463 (22%)	462 (22%)	469 (22%)

DISTRIBUTION OF PATIENT CHARACTERISTICS BY TREATMENT ARM

	L + T	T→L	т
	(N = 2,093)	(N = 2,091)	(N = 2,097)
Menopausal Status			
Premenopausal	908 (43%)	929 (44%)	908 (43%)
Postmenopausal or male	1,185 (57%)	1,162 (56%)	1,189 (57%)
Pathological primary tumor size - largest	diameter of inv	asive compone	ent
Missing	27	41	38
≤ 2cm	937 (45%)	938 (46%)	942 (46%)
> 2cm to ≤ 5cm	1,002 (49%)	980 (48%)	990 (48%)
> 5cm	127 (6%)	132 (6%)	127 (6%)
Histologic grade			
Missing	10	7	9
Gx: Differentiation cannot be assessed	79 (4%)	61 (3%)	59 (3%)
G1: Well differentiated	51 (2%)	59 (3%)	48 (2%)
G2: Moderately differentiated	774 (37%)	793 (38%)	744 (36%)
G3: Poorly			
differentiated/undifferentiated	1,179 (57%)	1,171 (56%)	1,237 (59%)

DISEASE-FREE SURVIVAL (DFS) ANALYSIS

**p-value ≤ 0.025 required for statistical significance

DFS BY HORMONE RECEPTOR STATUS

Interaction tests p = 0.70 L + T

 $p = 0.60 T \rightarrow L$

DFS BY CHEMOTHERAPY TIMING

	Sequential (Design 1)						Con	cui	rent	(Des	ign	s 2 & 2	2B)		
Free	100% –							-							
lisease	80% -							_							
e and D	60% –	—— Lap	o+Tras s->Lar	n				-	—— Lap —— Tra	+Tra s->La	S				
nts Aliv	40% –	Tra MFU = 4.	.9 yrs	~				-	—— Tra MFU = 3	s .9 yrs	5				
ct of Patie	20% –	Arm Lap+Tras Tras->Lap	No. pts 1155 1143	No. events E 168 184	4yr)FS rate 86% 85%	Hazard ratio c.f. Tras 0.80 (0.65,0.98 0.90 (0.74,1.10	p-value) 0.034) 0.317	-	Arm Lap+Tras Tras->Lap Tras	No. pts 938 948	No. events D 86 100 94	4yr 9FS rate 90% 89% 90%	Haz c 0.94 (1.08 (zard ratio .f. Tras * (0.70,1.26) (0.81,1.43) * 95% Cl	p-value 0.680 0.593
ם.	0% –	0	1	207	0370	3 4	5		0	1	2	00 /0	3	4	5
	Years since Randomisation							Yea	ars sinc	e Ran	domi	sation			
Lap Tras	o+Tras ₅->Lap Tras	1155 1143 1147	1057 1060 1060	995 985 990	9 9 9	35 875 41 891 13 846	399 409 382		938 948 950	881 897 899	837 837 848	7 7 3	737 743 745	381 370 400	75 67 66

Interaction tests p = 0.41 L + T

p = 0.31 T →L

OVERALL SURVIVAL (OS) ANALYSIS

PROPORTION OF PATIENTS RECEIVING ≥ 85% OF THE PLANNED DOSE OF ANTI-HER2 DRUGS

MAIN DIFFERENCES IN AEs BY TREATMENT ARM

Conclusions

- The event rate was lower than anticipated: 555 DFS events for the L + T vs. T comparison at 4.5 years median follow-up instead of target of 850.
- The higher pCR observed with L + T vs. T in NeoALTTO (51.3% vs. 29.5%) did not translate into improved survival outcomes in ALTTO at 4.5 years median followup.
- Results of adjuvant pertuzumab trial (APHINITY) are anticipated to determine if higher pCR observed with trastuzumab plus pertuzumab (45.8% vs. 29%) in NeoSphere translates to improved long-term outcomes.

Efficacy Of Adjuvant Trastuzumab Compared With No Trastuzumab for Patients With HER2-Positive Breast Cancer And Tumors ≤ 2cm: A Meta-analysis Of The Randomized Trastuzumab Trials

O'Sullivan CC, Bradbury I, de Azambuja E, Perez EA, Rastogi P, Spielmann M, Joensuu H, Ballman KV, Costantino JP, Delaloge S, Zardavas D, Piccart-Gebhart M, Zujewski JA, Holmes E, Gelber RD.

Long term follow up on behalf of the Trastuzumab Overview Group

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Favorable Prognosis Seen for Patients with HER2-Positive BC and Hormone Receptor (HR)-Positive Tumors ≤ 2cm & 0/1 N+ Treated with Chemotherapy/ Hormones/ Trastuzumab

5 year DFS 91%

5 year OS 97%

"Is there an advantage of trastuzumab compared with no trastuzumab for patients with small tumors?"

Efficacy Analysis

• Aim:

 Compare efficacy of trastuzumab vs. no trastuzumab in pts with small HER2-positive breast cancer (BC) in the adjuvant randomized trastuzumab trials

• Methods:

- Analysis performed separately for hormone receptor (HR)positive and HR-negative cohorts
- Individual patient meta-analysis: tumors ≤ 2 cm (T1a, T1b and T1c) & 0-1, 2-3 and ≥ 4 positive nodes.

PRESENTED AT:

Trials Included in This Analysis

Trial	HER2+ Tumors	Timing of Trastuzumab	Duration of Trastuzumab	Chemotherapy regimen	Median follow up (years)
HERA	5,102	Sequential	1 or 2 years	Any – 94% A; 26% A and T	8.0
NCCTG N9831	3,505	Concurrent or sequential	1 year	AC→T AC→ w TH AC→ w T→H	8.7
NSABP B-31	3,222	Concurrent	1 year	AC→T AC→TH	9.4
PACS 04	528	Sequential	1 year	FEC→H DE→ H	5.0
FinHER	232	Concurrent	9 weeks	D+/-H→FEC V+/-H→FEC	5.6

A-doxorubicin; T-paclitaxel; w-weekly; H-trastuzumab; F-5-fluorouracil; E-epirubicin; Ccyclophosphamide; D-docetaxel; V-vinorelbine

Presented by: Ciara C. O'Sullivan email:ciara.o'sullivan@nih.gov

PRESENTED AT:

CIENCE & SOCIETY

HER2-Positive Tumors ≤ 2cm

Trial	HER2+ Tumors	HER2+ Tumors ≤2cm	Received Trastuzumab	DID No receiv Trastu	OT e izumab
HERA	5,102	2,002	1,320	682	
NCCTG N9831	3,505	756	405	351	
NSABP B-31	3,222	1,146	711	435	
PACS 04	528	235	106	129	
FinHER	232	81	46	35	
TOTAL PTS	12,589	4,220	2,588	1,632	
Presented by: C	iara C. O'Sullivan	ail: ciara o'sullivan@ni	b gov PRES	ENTED AT:	

SCIENCE & SOCIETY

RESULTS: HR-Positive Disease: Tumor Size (≤ 2cm) & Nodal Status

DFS for HR-Positive Disease Treated With or Without Trastuzumab: Tumors ≤ 2cm

SCIENCE & SOCIET

Study Specific Hazard Ratios For Model Stratifying on Study, Including Overall Study and Nodal Status Effects in HR-Positive Cohort: Tumors ≤ 2cm

Presented by: Ciara C.O'Sullivan email:ciara.o'sullivan@nih.gov

PRESENTED AT:

Cumulative Incidence of Recurrence or Death: HR-Positive Disease with Tumors ≤ 2cm

Presented by: Ciara C.O'Sullivan email:ciara.o'sullivan@nih.gov

PRESENTED AT:

HR-negative disease : Tumor Size ≤ 2cm & Nodal Status

Presented by: Ciara C.O'Sullivan email: ciara.o'sullivan@nih.gov

PRESENTED AT:

ANNUAL

DFS for HR-Negative Disease Treated With or Without Trastuzumab: Tumors ≤ 2cm

Presented by: Ciara C. O'Sullivan email: ciara.o'sullivan@nih.gov

PRESENTED AT:

Cumulative Incidence of Recurrence or Death: HR-Negative Disease with Tumors ≤ 2cm

Presented by: Ciara C.O'Sullivan email:ciara.o'sullivan@nih.gov

PRESENTED AT:

Conclusions

- Patients with tumors ≤ 2 cm benefitted substantially in terms of both DFS and OS from trastuzumab therapy
- Most patients included in analysis had T1c and positive axillary lymph nodes
- Benefit of trastuzumab-based chemotherapy among T1ab, N0 tumors remains undefined.
- Benefit was similar in HR-negative and HR-positive patients
Prevention of Early Menopause Study (POEMS)-S0230

Phase III trial of LHRH analog during chemotherapy to reduce ovarian failure in early stage, hormone receptornegative breast cancer: an international Intergroup trial of SWOG, IBCSG, ECOG, and CALGB (Alliance)

Halle C.F. Moore, Joseph M. Unger, Kelly-Anne Phillips, Frances Boyle, Erika Hitre, David Porter, Prudence A. Francis, Lori Minasian, Richard D. Gelber, Lori J. Goldstein, Henry L. Gomez, Carlos S. Vallejos,

Ann H. Partridge, Shaker R. Dakhil, Silvana Martino, William E. Barlow, Carol J. Fabian, Frank L. Meyskens, Gabriel N. Hortobagyi, Kathy S. Albain

Presented By Halle Moore at 2014 ASCO Annual Meeting

Background

- Approximately 25% of breast cancers occur in women under age 50
- Ovarian failure is a common consequence of chemotherapy treatment
- Ovarian failure rates depend on chemotherapy regimen/duration, patient age and perhaps gonadal activity at time of chemotherapy administration

POEMS/S0230 Schema

Premenopausal Stage I, II, IIIA ER-/PR-Breast Cancer Under Age 50

> Stratified by age and chemotherapy regimen **Randomization**

Standard cyclophosphamide containing (neo)adjuvant chemotherapy Standard cyclophosphamide containing (neo)adjuvant chemotherapy + goserelin

ASCO

Presented By Halle Moore at 2014 ASCO Annual Meeting

POEMS Objectives and Endpoints

- Primary
 - Ovarian Failure at 2 years
 - Defined as amenorrhea for the prior 6 months and FSH in the postmenopausal range
- Secondary
 - Ovarian dysfunction at 1 and 2 years
 Defined as amenorrhea for preceding three months and FSH, estradiol and/or inhibin B levels in the postmenopausal range
 - Pregnancy Outcomes
- Exploratory
 - DFS and OS

Goserelin Administration

- Goserelin 3.6 mg SubQ every 4 weeks
- Started at least 1 week prior to first chemotherapy dose
- Continued for duration of chemotherapy

 Last goserelin administered within 2 weeks of
 (before or after) the final chemotherapy dose

POEMS Consort Diagram

257 Patients Randomized

Patients	Standard Chemotherapy	Chemotherapy + Goserelin	
	n=113	n=105	
Age in years: median (range)	38.7 (25-49)	37.6 (26-49)	
Age <40 years	62%	65%	
Age <u>></u> 40 years	38%	35%	
Planned chemotherapy:			
3-4 month/cycle anthracycline	19%	23%	
6-8 month/cycle anthracycline	71%	69%	
3-4 month/cycle non-anthra.	4%	4%	
6-8 month/cycle non-anthra.	6%	5%	
<u>Stage</u>			
	28%	22%	
	46%	53%	
	26%	24%	
			ASCO 50 ANNUAL 50 MEETINK

POEMS Ovarian Failure

	Standard	Chemotherapy
	Chemotherapy	+ Goserelin
Ovarian failure at 2 years	15/69 = <mark>22%</mark>	5/66 = <mark>8%</mark>

Logistic Regression Results:

Analysis	Odds Ratio	95% CI	p-value	
			One-sided	Two-sided
Univariate	0.30	0.10 – 0.87	p=.01	p=.03
Stratified*	0.30	0.09 – 0.97	p=.02	p=.04
Multivariate*	0.36	0.11 – 1.14	p=.04	p=.08

*Accounting for age and regimen through stratification ("Stratified") or covariate ("Multivariate") adjustment, respectively

Presented By Halle Moore at 2014 ASCO Annual Meeting

ASCO 50 ANNUA

POEMS Pregnancy

	Standard Chemotherapy n=113	Chemotherapy + Goserelin n=105	Adjusted OR	Adjusted P-value
Attempted pregnancy	18 (16%)	25 (24%)		p=.12
Achieved pregnancy	12 (11%)	22 (21%)	2.45	p=.03
Patients with <u>></u> 1 delivery Delivery or ongoing pregnancy	8 (7%) 10 (9%)	16 (15%) 19 (18%)	2.51 2.45	р=.05 р=.04
Total number of babies	12	18		
Ongoing pregnancies Total adverse events	3	5		
Miscarriages	5	4		
Elective termination	3	2		
Delivery complication	2	2		

SCIENCE & SOCIET

POEMS Disease Free Survival

Presented By Halle Moore at 2014 ASCO Annual Meeting

POEMS Overall Survival

Conclusions

- Despite lower than planned accrual and incomplete follow-up data on 38% of patients, goserelin was associated with decreased rates of ovarian failure after chemotherapy and more successful pregnancies.
- Findings of improved DFS and OS are reassuring
- Study did not include hormone-receptor positive patients, so benefit and safety of goserelin in this setting is unclear
- For ER/PR-negative patients who are beginning chemotherapy should consider this option for the prevention of premature ovarian failure.